IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v54y1998i3p257-266.html
   My bibliography  Save this article

Simulation study of CONWIP for a cold rolling plant

Author

Listed:
  • Huang, Min
  • Wang, Dingwei
  • Ip, W. H.

Abstract

No abstract is available for this item.

Suggested Citation

  • Huang, Min & Wang, Dingwei & Ip, W. H., 1998. "Simulation study of CONWIP for a cold rolling plant," International Journal of Production Economics, Elsevier, vol. 54(3), pages 257-266, May.
  • Handle: RePEc:eee:proeco:v:54:y:1998:i:3:p:257-266
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(97)00152-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maria Di Mascolo & Yannick Frein & Yves Dallery, 1996. "An Analytical Method for Performance Evaluation of Kanban Controlled Production Systems," Operations Research, INFORMS, vol. 44(1), pages 50-64, February.
    2. Mark L. Spearman, 1992. "Customer Service in Pull Production Systems," Operations Research, INFORMS, vol. 40(5), pages 948-958, October.
    3. Jean-Luc Deleersnyder & Thom J. Hodgson & Henri Muller-Malek & Peter J. O'Grady, 1989. "Kanban Controlled Pull Systems: An Analytic Approach," Management Science, INFORMS, vol. 35(9), pages 1079-1091, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aqlan, Faisal & Lam, Sarah S. & Ramakrishnan, Sreekanth, 2014. "An integrated simulation–optimization study for consolidating production lines in a configure-to-order production environment," International Journal of Production Economics, Elsevier, vol. 148(C), pages 51-61.
    2. Ovalle, Oscar Rubiano & Marquez, Adolfo Crespo, 2003. "Exploring the utilization of a CONWIP system for supply chain management. A comparison with fully integrated supply chains," International Journal of Production Economics, Elsevier, vol. 83(2), pages 195-215, February.
    3. Gong, Qiguo & Yang, Yuru & Wang, Shouyang, 2014. "Information and decision-making delays in MRP, KANBAN, and CONWIP," International Journal of Production Economics, Elsevier, vol. 156(C), pages 208-213.
    4. Latifa Benhamou & Samir Lamouri & Patrick Burlat & Vincent Giard, 2023. "Digital Twin: An Added Value for Digital CONWIP in the Context of Industry 4.0," Sustainability, MDPI, vol. 15(13), pages 1-18, June.
    5. Qiu, Robin G., 2005. "Virtual production line based WIP control for semiconductor manufacturing systems," International Journal of Production Economics, Elsevier, vol. 95(2), pages 165-178, February.
    6. Fernando José Gómez Paredes & Moacir Godinho Filho & Matthias Thürer & Nuno O. Fernandes & Charbel José Chiappeta Jabbour, 2022. "Factors for choosing production control systems in make-to-order shops: a systematic literature review," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 639-674, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao Xiaobo & Qiguo Gong & Kenichi Nakashima, 2001. "Analysis of a production system in a general configuration," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(2), pages 128-143, March.
    2. Wilhelm, W. E. & Som, Pradip, 1998. "Analysis of a single-stage, single-product, stochastic, MRP-controlled assembly system," European Journal of Operational Research, Elsevier, vol. 108(1), pages 74-93, July.
    3. Yucesan, Enver & de Groote, Xavier, 2000. "Lead times, order release mechanisms, and customer service," European Journal of Operational Research, Elsevier, vol. 120(1), pages 118-130, January.
    4. Liberopoulos, George & Koukoumialos, Stelios, 2005. "Tradeoffs between base stock levels, numbers of kanbans, and planned supply lead times in production/inventory systems with advance demand information," International Journal of Production Economics, Elsevier, vol. 96(2), pages 213-232, May.
    5. Iwase, Masaharu & Ohno, Katsuhisa, 2011. "The performance evaluation of a multi-stage JIT production system with stochastic demand and production capacities," European Journal of Operational Research, Elsevier, vol. 214(2), pages 216-222, October.
    6. Tardif, Valerie & Maaseidvaag, Lars, 2001. "An adaptive approach to controlling kanban systems," European Journal of Operational Research, Elsevier, vol. 132(2), pages 411-424, July.
    7. Alfieri, Arianna & Matta, Andrea, 2012. "Mathematical programming formulations for approximate simulation of multistage production systems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 773-783.
    8. Arabatzis, Garyfallos & Petridis, Konstantinos & Galatsidas, Spyros & Ioannou, Konstantinos, 2013. "A demand scenario based fuelwood supply chain: A conceptual model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 687-697.
    9. Kim, Ilhyung & Tang, Christopher S., 1997. "Lead time and response time in a pull production control system," European Journal of Operational Research, Elsevier, vol. 101(3), pages 474-485, September.
    10. Seki, Yoichi & Hoshino, Naoto, 1999. "Transient behavior of a single-stage kanban system based on the queueing model," International Journal of Production Economics, Elsevier, vol. 60(1), pages 369-374, April.
    11. Kumar Satyam & Ananth Krishnamurthy, 2013. "Performance analysis of CONWIP systems with batch size constraints," Annals of Operations Research, Springer, vol. 209(1), pages 85-114, October.
    12. Cigdem Gurgur, 2013. "Optimal configuration of a decentralized, market-driven production/inventory system," Annals of Operations Research, Springer, vol. 209(1), pages 139-157, October.
    13. Hirakawa, Yasuhiro, 1996. "Performance of a multistage hybrid push/pull production control system," International Journal of Production Economics, Elsevier, vol. 44(1-2), pages 129-135, June.
    14. Chen-Yang Cheng & Shu-Fen Li & Chia-Leng Lee & Ranon Jientrakul & Chumpol Yuangyai, 2022. "A Comparative Study of Unbalanced Production Lines Using Simulation Modeling: A Case Study for Solar Silicon Manufacturing," Sustainability, MDPI, vol. 14(2), pages 1-15, January.
    15. Nico Goossens & Ananth Krishnamurthy & Nico Vandaele, 2019. "Analysis of a fork/join station with inputs from a finite population subnetwork with multi-server stations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 291-315, March.
    16. Engin Topan & Zeynep Avṣar, 2011. "An approximation for kanban controlled assembly systems," Annals of Operations Research, Springer, vol. 182(1), pages 133-162, January.
    17. Erkut Sönmez & Alan Scheller-Wolf & Nicola Secomandi, 2017. "An Analytical Throughput Approximation for Closed Fork/Join Networks," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 251-267, May.
    18. Askin, Ronald G. & Krishnan, Shravan, 2009. "Defining inventory control points in multiproduct stochastic pull systems," International Journal of Production Economics, Elsevier, vol. 120(2), pages 418-429, August.
    19. Wallace J. Hopp & Mark L. Spearman, 2004. "To Pull or Not to Pull: What Is the Question?," Manufacturing & Service Operations Management, INFORMS, vol. 6(2), pages 133-148, August.
    20. Wang, Shaojun & Sarker, Bhaba R., 2005. "An assembly-type supply chain system controlled by kanbans under a just-in-time delivery policy," European Journal of Operational Research, Elsevier, vol. 162(1), pages 153-172, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:54:y:1998:i:3:p:257-266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.