IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v182y2011i1p133-16210.1007-s10479-009-0560-1.html
   My bibliography  Save this article

An approximation for kanban controlled assembly systems

Author

Listed:
  • Engin Topan
  • Zeynep Avṣar

Abstract

An approximation is proposed to evaluate the steady-state performance of kanban controlled two-stage assembly systems. The development of the approximation is as follows. The considered continuous-time Markov chain is aggregated keeping the model exact, and this aggregate model is approximated replacing some state-dependent transition rates with constant rates. The approximate aggregate model is, then, decomposed into submodels and a product-form steady-state distribution is obtained for each submodel. Finally, the submodels are combined in such a way that the size of the problem becomes independent of the number of kanbans. This leads to the computational advantage in solving the combined model using numerical matrix-geometric solution algorithms. Numerical comparisons of the combined model with simulation, exact model, approximate aggregate model and an approximation in the literature show that the proposed approximation performs well in terms of accuracy and computational burden. Copyright Springer Science+Business Media, LLC 2011

Suggested Citation

  • Engin Topan & Zeynep Avṣar, 2011. "An approximation for kanban controlled assembly systems," Annals of Operations Research, Springer, vol. 182(1), pages 133-162, January.
  • Handle: RePEc:spr:annopr:v:182:y:2011:i:1:p:133-162:10.1007/s10479-009-0560-1
    DOI: 10.1007/s10479-009-0560-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-009-0560-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-009-0560-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeynep Avsar & W. Zijm & Umut Rodoplu, 2009. "An approximate model for base-stock-controlled assembly systems," IISE Transactions, Taylor & Francis Journals, vol. 41(3), pages 260-274.
    2. Matta, Andrea & Dallery, Yves & Di Mascolo, Maria, 2005. "Analysis of assembly systems controlled with kanbans," European Journal of Operational Research, Elsevier, vol. 166(2), pages 310-336, October.
    3. Baynat, Bruno & Dallery, Yves, 1993. "Approximate techniques for general closed queueing networks with subnetworks having population constraints," European Journal of Operational Research, Elsevier, vol. 69(2), pages 250-264, September.
    4. Maria Di Mascolo & Yannick Frein & Yves Dallery, 1996. "An Analytical Method for Performance Evaluation of Kanban Controlled Production Systems," Operations Research, INFORMS, vol. 44(1), pages 50-64, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Avṣar, Zeynep Müge & Henk Zijm, W., 2014. "Approximate queueing models for capacitated multi-stage inventory systems under base-stock control," European Journal of Operational Research, Elsevier, vol. 236(1), pages 135-146.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nico Goossens & Ananth Krishnamurthy & Nico Vandaele, 2019. "Analysis of a fork/join station with inputs from a finite population subnetwork with multi-server stations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 291-315, March.
    2. Iwase, Masaharu & Ohno, Katsuhisa, 2011. "The performance evaluation of a multi-stage JIT production system with stochastic demand and production capacities," European Journal of Operational Research, Elsevier, vol. 214(2), pages 216-222, October.
    3. Matta, Andrea & Dallery, Yves & Di Mascolo, Maria, 2005. "Analysis of assembly systems controlled with kanbans," European Journal of Operational Research, Elsevier, vol. 166(2), pages 310-336, October.
    4. Yonit Barron, 2023. "The Delay Time Profile of Multistage Networks with Synchronization," Mathematics, MDPI, vol. 11(14), pages 1-30, July.
    5. Tardif, Valerie & Maaseidvaag, Lars, 2001. "An adaptive approach to controlling kanban systems," European Journal of Operational Research, Elsevier, vol. 132(2), pages 411-424, July.
    6. Wilhelm, W. E. & Som, Pradip, 1998. "Analysis of a single-stage, single-product, stochastic, MRP-controlled assembly system," European Journal of Operational Research, Elsevier, vol. 108(1), pages 74-93, July.
    7. Kumar Satyam & Ananth Krishnamurthy, 2013. "Performance analysis of CONWIP systems with batch size constraints," Annals of Operations Research, Springer, vol. 209(1), pages 85-114, October.
    8. Cigdem Gurgur, 2013. "Optimal configuration of a decentralized, market-driven production/inventory system," Annals of Operations Research, Springer, vol. 209(1), pages 139-157, October.
    9. Erkut Sönmez & Alan Scheller-Wolf & Nicola Secomandi, 2017. "An Analytical Throughput Approximation for Closed Fork/Join Networks," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 251-267, May.
    10. Wang, Shaojun & Sarker, Bhaba R., 2005. "An assembly-type supply chain system controlled by kanbans under a just-in-time delivery policy," European Journal of Operational Research, Elsevier, vol. 162(1), pages 153-172, April.
    11. Liberopoulos, George & Koukoumialos, Stelios, 2005. "Tradeoffs between base stock levels, numbers of kanbans, and planned supply lead times in production/inventory systems with advance demand information," International Journal of Production Economics, Elsevier, vol. 96(2), pages 213-232, May.
    12. Gaury, E.G.A. & Kleijnen, J.P.C. & Pierreval, H., 1998. "Customized Pull Systems for Single-Product Flow Lines," Discussion Paper 1998-117, Tilburg University, Center for Economic Research.
    13. Lage Junior, Muris & Godinho Filho, Moacir, 2010. "Variations of the kanban system: Literature review and classification," International Journal of Production Economics, Elsevier, vol. 125(1), pages 13-21, May.
    14. Mark Vroblefski & R. Ramesh & Stanley Zionts, 2000. "General Open and Closed Queueing Networks with Blocking: A Unified Framework for Approximation," INFORMS Journal on Computing, INFORMS, vol. 12(4), pages 299-316, November.
    15. Park, Chan-Woo & Lee, Hyo-Seong, 2013. "Performance evaluation of a multi-product CONWIP assembly system with correlated external demands," International Journal of Production Economics, Elsevier, vol. 144(1), pages 334-344.
    16. Zhao Xiaobo & Qiguo Gong & Kenichi Nakashima, 2001. "Analysis of a production system in a general configuration," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(2), pages 128-143, March.
    17. Duri, Christelle & Frein, Yannick & Lee, Hyo-Seong, 2000. "Performance evaluation and design of a CONWIP system with inspections," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 219-229, March.
    18. Corrado Cuccurullo & Massimo Aria & Fabrizia Sarto, 2016. "Foundations and trends in performance management. A twenty-five years bibliometric analysis in business and public administration domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 595-611, August.
    19. Wang, Shaojun & Sarker, Bhaba R., 2006. "Optimal models for a multi-stage supply chain system controlled by kanban under just-in-time philosophy," European Journal of Operational Research, Elsevier, vol. 172(1), pages 179-200, July.
    20. Cigdem Z. Gurgur & Tayfur Altiok, 2007. "Analysis of decentralized multi‐product pull systems with lost sales," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(4), pages 357-370, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:182:y:2011:i:1:p:133-162:10.1007/s10479-009-0560-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.