IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v132y2001i2p411-424.html
   My bibliography  Save this article

An adaptive approach to controlling kanban systems

Author

Listed:
  • Tardif, Valerie
  • Maaseidvaag, Lars

Abstract

No abstract is available for this item.

Suggested Citation

  • Tardif, Valerie & Maaseidvaag, Lars, 2001. "An adaptive approach to controlling kanban systems," European Journal of Operational Research, Elsevier, vol. 132(2), pages 411-424, July.
  • Handle: RePEc:eee:ejores:v:132:y:2001:i:2:p:411-424
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(00)00119-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maria Di Mascolo & Yannick Frein & Yves Dallery, 1996. "An Analytical Method for Performance Evaluation of Kanban Controlled Production Systems," Operations Research, INFORMS, vol. 44(1), pages 50-64, February.
    2. Buzacott, J. A., 1989. "Queueing models of Kanban and MRP controlled production systems," Engineering Costs and Production Economics, Elsevier, vol. 17(1-4), pages 3-20, August.
    3. Mascolo, Maria Di, 1996. "Analysis of a synchronization station for the performance evaluation of a kanban system with a general arrival process of demands," European Journal of Operational Research, Elsevier, vol. 89(1), pages 147-163, February.
    4. Mark L. Spearman, 1991. "An Analytic Congestion Model for Closed Production Systems with IFR Processing Times," Management Science, INFORMS, vol. 37(8), pages 1015-1029, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thürer, Matthias & Stevenson, Mark & Protzman, Charles W., 2015. "COBACABANA (Control of Balance by Card Based Navigation): An alternative to kanban in the pure flow shop?," International Journal of Production Economics, Elsevier, vol. 166(C), pages 143-151.
    2. Framinan, Jose M. & Gonzalez, Pedro L. & Ruiz-Usano, Rafael, 2006. "Dynamic card controlling in a Conwip system," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 102-116, February.
    3. Zhou, Li & Naim, Mohamed M. & Ou Tang & Towill, Denis R., 2006. "Dynamic performance of a hybrid inventory system with a Kanban policy in remanufacturing process," Omega, Elsevier, vol. 34(6), pages 585-598, December.
    4. Takahashi, Katsuhiko & Morikawa, Katsumi & Nakamura, Nobuto, 2004. "Reactive JIT ordering system for changes in the mean and variance of demand," International Journal of Production Economics, Elsevier, vol. 92(2), pages 181-196, November.
    5. Lage Junior, Muris & Godinho Filho, Moacir, 2010. "Variations of the kanban system: Literature review and classification," International Journal of Production Economics, Elsevier, vol. 125(1), pages 13-21, May.
    6. Jodlbauer, H., 2008. "Customer driven production planning," International Journal of Production Economics, Elsevier, vol. 111(2), pages 793-801, February.
    7. Asefeh Hasani Goodarzi & Seyed Hessameddin Zegordi, 2020. "Vehicle routing problem in a kanban controlled supply chain system considering cross-docking strategy," Operational Research, Springer, vol. 20(4), pages 2397-2425, December.
    8. S Wang & B R Sarker, 2004. "A single-stage supply chain system controlled by kanban under just-in-time philosophy," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(5), pages 485-494, May.
    9. Ilgin, Mehmet Ali & Gupta, Surendra M., 2011. "Performance improvement potential of sensor embedded products in environmental supply chains," Resources, Conservation & Recycling, Elsevier, vol. 55(6), pages 580-592.
    10. Francesco Lolli & Rita Gamberini & Claudio Giberti & Bianca Rimini & Federica Bondi, 2016. "A simulative approach for evaluating alternative feeding scenarios in a kanban system," International Journal of Production Research, Taylor & Francis Journals, vol. 54(14), pages 4228-4239, July.
    11. Ponte, Borja & Costas, José & Puche, Julio & Pino, Raúl & de la Fuente, David, 2018. "The value of lead time reduction and stabilization: A comparison between traditional and collaborative supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 165-185.
    12. Wang, Shaojun & Sarker, Bhaba R., 2005. "An assembly-type supply chain system controlled by kanbans under a just-in-time delivery policy," European Journal of Operational Research, Elsevier, vol. 162(1), pages 153-172, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wilhelm, W. E. & Som, Pradip, 1998. "Analysis of a single-stage, single-product, stochastic, MRP-controlled assembly system," European Journal of Operational Research, Elsevier, vol. 108(1), pages 74-93, July.
    2. Liberopoulos, George & Koukoumialos, Stelios, 2005. "Tradeoffs between base stock levels, numbers of kanbans, and planned supply lead times in production/inventory systems with advance demand information," International Journal of Production Economics, Elsevier, vol. 96(2), pages 213-232, May.
    3. Park, Chan-Woo & Lee, Hyo-Seong, 2013. "Performance evaluation of a multi-product CONWIP assembly system with correlated external demands," International Journal of Production Economics, Elsevier, vol. 144(1), pages 334-344.
    4. Zhao Xiaobo & Qiguo Gong & Kenichi Nakashima, 2001. "Analysis of a production system in a general configuration," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(2), pages 128-143, March.
    5. Gaury, E.G.A. & Kleijnen, J.P.C. & Pierreval, H., 1998. "Customized Pull Systems for Single-Product Flow Lines," Other publications TiSEM ac7da569-7495-4fc4-a4e1-0, Tilburg University, School of Economics and Management.
    6. Subba Rao, S. & Gunasekaran, A. & Goyal, S. K. & Martikainen, T., 1998. "Waiting line model applications in manufacturing," International Journal of Production Economics, Elsevier, vol. 54(1), pages 1-28, January.
    7. Wallace J. Hopp & Mark L. Spearman, 2004. "To Pull or Not to Pull: What Is the Question?," Manufacturing & Service Operations Management, INFORMS, vol. 6(2), pages 133-148, August.
    8. Kefeli, Ali & Uzsoy, Reha & Fathi, Yahya & Kay, Michael, 2011. "Using a mathematical programming model to examine the marginal price of capacitated resources," International Journal of Production Economics, Elsevier, vol. 131(1), pages 383-391, May.
    9. Kim, Ilhyung & Tang, Christopher S., 1997. "Lead time and response time in a pull production control system," European Journal of Operational Research, Elsevier, vol. 101(3), pages 474-485, September.
    10. Kumar Satyam & Ananth Krishnamurthy, 2013. "Performance analysis of CONWIP systems with batch size constraints," Annals of Operations Research, Springer, vol. 209(1), pages 85-114, October.
    11. Cigdem Gurgur, 2013. "Optimal configuration of a decentralized, market-driven production/inventory system," Annals of Operations Research, Springer, vol. 209(1), pages 139-157, October.
    12. Jacobs, F. Robert & Bendoly, Elliot, 2003. "Enterprise resource planning: Developments and directions for operations management research," European Journal of Operational Research, Elsevier, vol. 146(2), pages 233-240, April.
    13. Nico Goossens & Ananth Krishnamurthy & Nico Vandaele, 2019. "Analysis of a fork/join station with inputs from a finite population subnetwork with multi-server stations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 291-315, March.
    14. Wang, Shaojun & Sarker, Bhaba R., 2005. "An assembly-type supply chain system controlled by kanbans under a just-in-time delivery policy," European Journal of Operational Research, Elsevier, vol. 162(1), pages 153-172, April.
    15. Driessen, M.A. & van Houtum, G.J. & Zijm, W.H.M. & Rustenburg, W.D., 2020. "Capacity assignment in repair shops with high material uncertainty," International Journal of Production Economics, Elsevier, vol. 221(C).
    16. Axsater, Sven & Rosling, Kaj, 1999. "Ranking of generalised multi-stage KANBAN policies," European Journal of Operational Research, Elsevier, vol. 113(3), pages 560-567, March.
    17. Duri, Christelle & Frein, Yannick & Lee, Hyo-Seong, 2000. "Performance evaluation and design of a CONWIP system with inspections," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 219-229, March.
    18. Wang, Shaojun & Sarker, Bhaba R., 2006. "Optimal models for a multi-stage supply chain system controlled by kanban under just-in-time philosophy," European Journal of Operational Research, Elsevier, vol. 172(1), pages 179-200, July.
    19. Iwase, Masaharu & Ohno, Katsuhisa, 2011. "The performance evaluation of a multi-stage JIT production system with stochastic demand and production capacities," European Journal of Operational Research, Elsevier, vol. 214(2), pages 216-222, October.
    20. Karaesmen, Fikri & Dallery, Yves, 2000. "A performance comparison of pull type control mechanisms for multi-stage manufacturing," International Journal of Production Economics, Elsevier, vol. 68(1), pages 59-71, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:132:y:2001:i:2:p:411-424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.