IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v194y2017icp200-213.html
   My bibliography  Save this article

An investigation of renewable certificates policy in Swedish electricity industry using an integrated system dynamics model

Author

Listed:
  • Tang, Ou
  • Rehme, Jakob

Abstract

Energy policy has a vital impact on the investment in renewable energy capacities and on the decommissioning of traditional ones. Currently Sweden and Norway aim to expand the renewable electricity production by 26.4TWh between 2012 and 2020, and subsequently to reduce CO2 emissions. To achieve this, the Swedish Energy Agency issues to renewable producers electricity certificates, which are sold on an open market to increase revenues. Meanwhile, the electricity is priced based on a marginal cost principle, and the price is highly reliant on the capacity profile and energy balance in the system, and consequently on the expanding and decommissioning decisions. The above price issues, together with the intermittent availability of renewable energy sources and the uncertainty of future fuel costs, will significantly affect the economic performance of the electricity producers. It is only after understanding the interaction of those factors that we can define companies’ business models for achieving a sustainable development in the electricity sector. This study applies a system dynamics approach and presents a model to integrate both strategic decisions such as capacity expansion/decommission, and operational features such as randomness and seasonal factors in electricity production. The model highlights the complex and nonlinear interaction of important factors in the electricity sector. The study results indicate that the energy policy should not be introduced in an isolated manner, but rather need to incorporate the incentives of renewables with other decisions such as nuclear decommission. Additionally, this study predicts an upcoming increase in electricity price, as well as a more volatile price after the capacity profile has been changed and dominated by hydro, biomass and wind. This study provides guidelines for policy makers and managers to make better-informed decisions for a healthy development of their businesses as well as of the entire electricity sector.

Suggested Citation

  • Tang, Ou & Rehme, Jakob, 2017. "An investigation of renewable certificates policy in Swedish electricity industry using an integrated system dynamics model," International Journal of Production Economics, Elsevier, vol. 194(C), pages 200-213.
  • Handle: RePEc:eee:proeco:v:194:y:2017:i:c:p:200-213
    DOI: 10.1016/j.ijpe.2017.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527317300713
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2017.03.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shih, Yi-Hsuan & Tseng, Chao-Heng, 2014. "Cost-benefit analysis of sustainable energy development using life-cycle co-benefits assessment and the system dynamics approach," Applied Energy, Elsevier, vol. 119(C), pages 57-66.
    2. Kong Chyong Chi & David M. Reiner & William J. Nuttall, 2009. "Dynamics of the UK Natural Gas Industry: System Dynamics Modelling and Long-Term Energy Policy Analysis," Working Papers EPRG 0913, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    3. Jahanpour, Ehsan & Ko, Hoo Sang & Nof, Shimon Y., 2016. "Collaboration protocols for sustainable wind energy distribution networks," International Journal of Production Economics, Elsevier, vol. 182(C), pages 496-507.
    4. Liu, Xue & Ma, Shoufeng & Tian, Junfang & Jia, Ning & Li, Geng, 2015. "A system dynamics approach to scenario analysis for urban passenger transport energy consumption and CO2 emissions: A case study of Beijing," Energy Policy, Elsevier, vol. 85(C), pages 253-270.
    5. Qudrat-Ullah, Hassan, 2013. "Understanding the dynamics of electricity generation capacity in Canada: A system dynamics approach," Energy, Elsevier, vol. 59(C), pages 285-294.
    6. de Menezes, Lilian M. & Houllier, Melanie A., 2016. "Reassessing the integration of European electricity markets: A fractional cointegration analysis," Energy Economics, Elsevier, vol. 53(C), pages 132-150.
    7. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    8. Qudrat-Ullah, Hassan & Seong, Baek Seo, 2010. "How to do structural validity of a system dynamics type simulation model: The case of an energy policy model," Energy Policy, Elsevier, vol. 38(5), pages 2216-2224, May.
    9. Ahmad, Salman & Mat Tahar, Razman & Muhammad-Sukki, Firdaus & Munir, Abu Bakar & Abdul Rahim, Ruzairi, 2016. "Application of system dynamics approach in electricity sector modelling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 29-37.
    10. Hassan Qudrat-Ullah, 2005. "MDESRAP: a model for understanding the dynamics of electricity supply, resources and pollution," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 23(1), pages 1-14.
    11. Wustenhagen, Rolf & Bilharz, Michael, 2006. "Green energy market development in Germany: effective public policy and emerging customer demand," Energy Policy, Elsevier, vol. 34(13), pages 1681-1696, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dehghan, Hamed & Amin-Naseri, Mohammad Reza & Nahavandi, Nasim, 2021. "A system dynamics model to analyze future electricity supply and demand in Iran under alternative pricing policies," Utilities Policy, Elsevier, vol. 69(C).
    2. Magdalena Tutak & Jarosław Brodny & Dominika Siwiec & Robert Ulewicz & Peter Bindzár, 2020. "Studying the Level of Sustainable Energy Development of the European Union Countries and Their Similarity Based on the Economic and Demographic Potential," Energies, MDPI, vol. 13(24), pages 1-31, December.
    3. Tang, Ou & Rehme, Jakob & Cerin, Pontus, 2022. "Levelized cost of hydrogen for refueling stations with solar PV and wind in Sweden: On-grid or off-grid?," Energy, Elsevier, vol. 241(C).
    4. Uddin, Gazi Salah & Tang, Ou & Sahamkhadam, Maziar & Taghizadeh-Hesary, Farhad & Yahya, Muhammad & Cerin, Pontus & Rehme, Jakob, 2021. "Analysis of Forecasting Models in an Electricity Market under Volatility," ADBI Working Papers 1212, Asian Development Bank Institute.
    5. Dehghan, Hamed & Amin-Naseri, Mohammad Reza, 2022. "A simulation-based optimization model to determine optimal electricity prices under various scenarios considering stakeholders’ objectives," Energy, Elsevier, vol. 238(PC).
    6. Sgarbossa, Fabio & Arena, Simone & Tang, Ou & Peron, Mirco, 2023. "Renewable hydrogen supply chains: A planning matrix and an agenda for future research," International Journal of Production Economics, Elsevier, vol. 255(C).
    7. Saura, Jose Ramon & Ribeiro-Navarrete, Samuel & Palacios-Marqués, Daniel & Mardani, Abbas, 2023. "Impact of extreme weather in production economics: Extracting evidence from user-generated content," International Journal of Production Economics, Elsevier, vol. 260(C).
    8. Mostafaeipour, Ali & Bidokhti, Abbas & Fakhrzad, Mohammad-Bagher & Sadegheih, Ahmad & Zare Mehrjerdi, Yahia, 2022. "A new model for the use of renewable electricity to reduce carbon dioxide emissions," Energy, Elsevier, vol. 238(PA).
    9. Bukhary, Saria & Ahmad, Sajjad & Batista, Jacimaria, 2018. "Analyzing land and water requirements for solar deployment in the Southwestern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3288-3305.
    10. Sgarbossa, Fabio & Arena, Simone & Tang, Ou & Peron, Mirco, 2022. "Reprint of: Renewable hydrogen supply chains: A planning matrix and an agenda for future research," International Journal of Production Economics, Elsevier, vol. 250(C).
    11. Tang, Ou & Rehme, Jakob & Cerin, Pontus & Huisingh, Donald, 2021. "Hydrogen production in the Swedish power sector: Considering operational volatilities and long-term uncertainties," Energy Policy, Elsevier, vol. 148(PB).
    12. Qin, Jindong & Li, Minxuan & Wang, Xiaojun & Pedrycz, Witold, 2024. "Collaborative emergency decision-making: A framework for deep learning with social media data," International Journal of Production Economics, Elsevier, vol. 267(C).
    13. Ibanez-Lopez, A.S. & Moratilla-Soria, B.Y., 2017. "An assessment of Spain's new alternative energy support framework and its long-term impact on wind power development and system costs through behavioral dynamic simulation," Energy, Elsevier, vol. 138(C), pages 629-646.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dehghan, Hamed & Amin-Naseri, Mohammad Reza & Nahavandi, Nasim, 2021. "A system dynamics model to analyze future electricity supply and demand in Iran under alternative pricing policies," Utilities Policy, Elsevier, vol. 69(C).
    2. Qudrat-Ullah, Hassan, 2015. "Independent power (or pollution) producers? Electricity reforms and IPPs in Pakistan," Energy, Elsevier, vol. 83(C), pages 240-251.
    3. Qudrat-Ullah, Hassan, 2014. "Green power in Ontario: A dynamic model-based analysis," Energy, Elsevier, vol. 77(C), pages 859-870.
    4. Herrera, Milton M. & Dyner, Isaac & Cosenz, Federico, 2019. "Assessing the effect of transmission constraints on wind power expansion in northeast Brazil," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
    5. Qudrat-Ullah, Hassan, 2017. "How to enhance the future use of energy policy simulation models through ex post validation," Energy, Elsevier, vol. 120(C), pages 58-66.
    6. Zapata, Sebastian & Castaneda, Monica & Herrera, Milton M. & Dyner, Isaac, 2023. "Investigating the concurrence of transmission grid expansion and the dissemination of renewables," Energy, Elsevier, vol. 276(C).
    7. Hendalianpour, Ayad & Liu, Peide & Amirghodsi, Sirous & Hamzehlou, Mohammad, 2022. "Designing a System Dynamics model to simulate criteria affecting oil and gas development contracts," Resources Policy, Elsevier, vol. 78(C).
    8. Liu, Dunnan & Xiao, Bowen, 2018. "Exploring the development of electric vehicles under policy incentives: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 120(C), pages 8-23.
    9. Ye, Rui-Ke & Gao, Zhuang-Fei & Fang, Kai & Liu, Kang-Li & Chen, Jia-Wei, 2021. "Moving from subsidy stimulation to endogenous development: A system dynamics analysis of China's NEVs in the post-subsidy era," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    10. Feng, Y.Y. & Chen, S.Q. & Zhang, L.X., 2013. "System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China," Ecological Modelling, Elsevier, vol. 252(C), pages 44-52.
    11. Armin Leopold, 2016. "Energy related system dynamic models: a literature review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 231-261, March.
    12. Alexandra Rese & Anke Kutschke & Daniel Baier, 2016. "Analyzing The Relative Influence Of Supply Side, Demand Side And Regulatory Factors On The Success Of Collaborative Energy Innovation Projects," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-43, February.
    13. Abba, Z.Y.I. & Balta-Ozkan, N. & Hart, P., 2022. "A holistic risk management framework for renewable energy investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    14. Abada, Ibrahim & Briat, Vincent & Massol, Olivier, 2013. "Construction of a fuel demand function portraying interfuel substitution, a system dynamics approach," Energy, Elsevier, vol. 49(C), pages 240-251.
    15. Zheng-Xia He & Shi-Chun Xu & Qin-Bin Li & Bin Zhao, 2018. "Factors That Influence Renewable Energy Technological Innovation in China: A Dynamic Panel Approach," Sustainability, MDPI, vol. 10(1), pages 1-30, January.
    16. Hartvigsson, Elias & Stadler, Michael & Cardoso, Gonçalo, 2018. "Rural electrification and capacity expansion with an integrated modeling approach," Renewable Energy, Elsevier, vol. 115(C), pages 509-520.
    17. Makena Coffman & Sherilyn Wee & Carl Bonham & Germaine Salim, 2013. "A Policy Analysis of Hawaii�s Solar Tax Credit Incentive," Working Papers 2013-11, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    18. Malen, Joel & Marcus, Alfred A., 2017. "Promoting clean energy technology entrepreneurship: The role of external context," Energy Policy, Elsevier, vol. 102(C), pages 7-15.
    19. Morcillo, José D. & Franco, Carlos J. & Angulo, Fabiola, 2018. "Simulation of demand growth scenarios in the Colombian electricity market: An integration of system dynamics and dynamic systems," Applied Energy, Elsevier, vol. 216(C), pages 504-520.
    20. Naila Nazir & Salman Ahmad, 2018. "Forest land conversion dynamics: a case of Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 389-405, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:194:y:2017:i:c:p:200-213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.