IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v148y2021ipbs0301421520307011.html
   My bibliography  Save this article

Hydrogen production in the Swedish power sector: Considering operational volatilities and long-term uncertainties

Author

Listed:
  • Tang, Ou
  • Rehme, Jakob
  • Cerin, Pontus
  • Huisingh, Donald

Abstract

With more renewables on the Swedish electricity market, while decommissioning nuclear power plants, electricity supply increasingly fluctuates and electricity prices are more volatile. There is, hence, a need for securing the electricity supply before energy storage solutions become widespread. Electricity price fluctuations, moreover, affect operating income of nuclear power plants due to their inherent operational inflexibility. Since the anticipated new applications of hydrogen in fuel cell vehicles and steel production, producing hydrogen has become a potential source of income, particularly when there is a surplus supply of electricity at low prices. The feasibility of investing in hydrogen production was investigated in a nuclear power plant, applying Swedish energy policy as background. The analysis applies a system dynamics approach incorporating the stochastic feature of electricity supply and prices. The study revealed that hydrogen production brings alternative opportunities for large-scale electricity production facilities in Sweden. Factors such as hydrogen price will be influential and require in-depth investigation. This study provides guidelines for power sector policymakers and managers who plan to engage in hydrogen production for industrial applications. Although this study was focused upon nuclear power sources, it can be extended to hydrogen production from renewable energy sources such as wind and solar.

Suggested Citation

  • Tang, Ou & Rehme, Jakob & Cerin, Pontus & Huisingh, Donald, 2021. "Hydrogen production in the Swedish power sector: Considering operational volatilities and long-term uncertainties," Energy Policy, Elsevier, vol. 148(PB).
  • Handle: RePEc:eee:enepol:v:148:y:2021:i:pb:s0301421520307011
    DOI: 10.1016/j.enpol.2020.111990
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520307011
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111990?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cany, Camille & Mansilla, Christine & da Costa, Pascal & Mathonnière, Gilles & Duquesnoy, Thierry & Baschwitz, Anne, 2016. "Nuclear and intermittent renewables: Two compatible supply options? The case of the French power mix," Energy Policy, Elsevier, vol. 95(C), pages 135-146.
    2. Tlili, Olfa & Mansilla, Christine & Robinius, Martin & Syranidis, Konstantinos & Reuss, Markus & Linssen, Jochen & André, Jean & Perez, Yannick & Stolten, Detlef, 2019. "Role of electricity interconnections and impact of the geographical scale on the French potential of producing hydrogen via electricity surplus by 2035," Energy, Elsevier, vol. 172(C), pages 977-990.
    3. Haghi, Ehsan & Raahemifar, Kaamran & Fowler, Michael, 2018. "Investigating the effect of renewable energy incentives and hydrogen storage on advantages of stakeholders in a microgrid," Energy Policy, Elsevier, vol. 113(C), pages 206-222.
    4. Andrea Masini & Emanuela Menichetti, 2013. "Investment decisions in the renewable energy sector: An analysis of non-financial drivers," Post-Print hal-00796331, HAL.
    5. Polzin, Friedemann & Migendt, Michael & Täube, Florian A. & von Flotow, Paschen, 2015. "Public policy influence on renewable energy investments—A panel data study across OECD countries," Energy Policy, Elsevier, vol. 80(C), pages 98-111.
    6. Andrea Masini & Emanuela Menichetti, 2013. "Investment Decisions in the Renewable Energy Sector: An Analysis of Non-Financial Drivers," Working Papers hal-01947453, HAL.
    7. Masini, Andrea & Menichetti, Emanuela, 2013. "Investment decisions in the renewable energy sector: An analysis of non-financial drivers," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 510-524.
    8. Masini, Andrea & Menichetti , Emanuela, 2013. "Investment Decisions in the Renewable Energy Sector: An Analysis of Non-Financial Drivers," HEC Research Papers Series 976, HEC Paris.
    9. Olfa Tlili & Christine Mansilla & David Frimat & Yannick Perez, 2019. "Hydrogen market penetration feasibility assessment: Mobility and natural gas markets in the US, Europe, China and Japan," Post-Print hal-02265824, HAL.
    10. Child, Michael & Breyer, Christian, 2017. "Transition and transformation: A review of the concept of change in the progress towards future sustainable energy systems," Energy Policy, Elsevier, vol. 107(C), pages 11-26.
    11. Tang, Ou & Rehme, Jakob, 2017. "An investigation of renewable certificates policy in Swedish electricity industry using an integrated system dynamics model," International Journal of Production Economics, Elsevier, vol. 194(C), pages 200-213.
    12. Orvika Rosnes, 2008. "The Impact of Climate Policies on the Operation of a Thermal Power Plant," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-22.
    13. Rissman, Jeffrey & Bataille, Chris & Masanet, Eric & Aden, Nate & Morrow, William R. & Zhou, Nan & Elliott, Neal & Dell, Rebecca & Heeren, Niko & Huckestein, Brigitta & Cresko, Joe & Miller, Sabbie A., 2020. "Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070," Applied Energy, Elsevier, vol. 266(C).
    14. Elliston, Ben & MacGill, Iain & Diesendorf, Mark, 2014. "Comparing least cost scenarios for 100% renewable electricity with low emission fossil fuel scenarios in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 66(C), pages 196-204.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sgarbossa, Fabio & Arena, Simone & Tang, Ou & Peron, Mirco, 2023. "Renewable hydrogen supply chains: A planning matrix and an agenda for future research," International Journal of Production Economics, Elsevier, vol. 255(C).
    2. Sgarbossa, Fabio & Arena, Simone & Tang, Ou & Peron, Mirco, 2022. "Reprint of: Renewable hydrogen supply chains: A planning matrix and an agenda for future research," International Journal of Production Economics, Elsevier, vol. 250(C).
    3. Tang, Ou & Rehme, Jakob & Cerin, Pontus, 2022. "Levelized cost of hydrogen for refueling stations with solar PV and wind in Sweden: On-grid or off-grid?," Energy, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mazzucato, Mariana & Semieniuk, Gregor, 2018. "Financing renewable energy: Who is financing what and why it matters," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 8-22.
    2. Escoffier, Margaux & Hache, Emmanuel & Mignon, Valérie & Paris, Anthony, 2021. "Determinants of solar photovoltaic deployment in the electricity mix: Do oil prices really matter?," Energy Economics, Elsevier, vol. 97(C).
    3. Laktuka, Krista & Pakere, Ieva & Kalnbalkite, Antra & Zlaugotne, Beate & Blumberga, Dagnija, 2023. "Renewable energy project implementation: Will the Baltic States catch up with the Nordic countries?," Utilities Policy, Elsevier, vol. 82(C).
    4. Joseph Curtin & Celine McInerney & Lara Johannsdottir, 2018. "How can financial incentives promote local ownership of onshore wind and solar projects? Case study evidence from Germany, Denmark, the UK and Ontario," Local Economy, London South Bank University, vol. 33(1), pages 40-62, February.
    5. Nadia Ameli & Paul Drummond & Alexander Bisaro & Michael Grubb & Hugues Chenet, 2020. "Climate finance and disclosure for institutional investors: why transparency is not enough," Climatic Change, Springer, vol. 160(4), pages 565-589, June.
    6. Curtin, Joseph & McInerney, Celine & Ó Gallachóir, Brian, 2017. "Financial incentives to mobilise local citizens as investors in low-carbon technologies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 534-547.
    7. Can Şener, Şerife Elif & Sharp, Julia L. & Anctil, Annick, 2018. "Factors impacting diverging paths of renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2335-2342.
    8. Zhang, Fang, 2023. "Does not having an NDB disadvantage a country in finance mobilization for the energy transition? A comparative analysis of the solar PV deployment in the United States, Germany and China," Energy Policy, Elsevier, vol. 172(C).
    9. Tongyu Meng & Jamie Newth & Christine Woods, 2022. "Ethical Sensemaking in Impact Investing: Reasons and Motives in the Chinese Renewable Energy Sector," Journal of Business Ethics, Springer, vol. 179(4), pages 1091-1117, September.
    10. Monasterolo, Irene & de Angelis, Luca, 2020. "Blind to carbon risk? An analysis of stock market reaction to the Paris Agreement," Ecological Economics, Elsevier, vol. 170(C).
    11. Joshua Sunday Riti & Deyong Song & Yang Shu & Miriam Kamah & Agya Adi Atabani, 2018. "Does renewable energy ensure environmental quality in favour of economic growth? Empirical evidence from China’s renewable development," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(5), pages 2007-2030, September.
    12. Ackermann, Simon & Szabo, Andrei & Bamberger, Joachim & Steinke, Florian, 2022. "Design and optimization of performance guarantees for hybrid power plants," Energy, Elsevier, vol. 239(PA).
    13. Semmler, Willi & Di Bartolomeo, Giovanni & Minooei Fard, Behnaz & Braga, Joao Paulo, 2022. "Limit pricing and entry game of renewable energy firms into the energy sector," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 179-190.
    14. Radulescu, Doina & Sulger, Philippe, 2022. "Interdependencies between countries in the provision of energy," Energy Economics, Elsevier, vol. 107(C).
    15. Michaela Makešová & Michaela Valentová, 2021. "The Concept of Multiple Impacts of Renewable Energy Sources: A Critical Review," Energies, MDPI, vol. 14(11), pages 1-21, May.
    16. Albino, Vito & Ardito, Lorenzo & Dangelico, Rosa Maria & Messeni Petruzzelli, Antonio, 2014. "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Elsevier, vol. 135(C), pages 836-854.
    17. Bertsch, Valentin & Di Cosmo, Valeria, 2018. "Are Renewables Profitable in 2030? A Comparison between Wind and Solar across Europe," ESP: Energy Scenarios and Policy 276178, Fondazione Eni Enrico Mattei (FEEM).
    18. Evangelia Karasmanaki & Spyridon Galatsidas & Georgios Tsantopoulos, 2019. "An Investigation of Factors Affecting the Willingness to Invest in Renewables among Environmental Students: A Logistic Regression Approach," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    19. Kathleen M. Saul & John H. Perkins, 2022. "A new framework for environmental education about energy transition: investment and the energy regulatory and industrial complex," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 12(1), pages 149-163, March.
    20. Kveselis, Vaclovas & Dzenajavičienė, Eugenija Farida & Masaitis, Sigitas, 2017. "Analysis of energy development sustainability: The example of the lithuanian district heating sector," Energy Policy, Elsevier, vol. 100(C), pages 227-236.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:148:y:2021:i:pb:s0301421520307011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.