Variable-length traffic state prediction and applications for urban network with adaptive signal timing plan
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2024.129566
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cheng, Anyu & Jiang, Xiao & Li, Yongfu & Zhang, Chao & Zhu, Hao, 2017. "Multiple sources and multiple measures based traffic flow prediction using the chaos theory and support vector regression method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 422-434.
- He, Silu & Luo, Qinyao & Du, Ronghua & Zhao, Ling & He, Guangjun & Fu, Han & Li, Haifeng, 2023. "STGC-GNNs: A GNN-based traffic prediction framework with a spatial–temporal Granger causality graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
- Hou, Qinzhong & Leng, Junqiang & Ma, Guosheng & Liu, Weiyi & Cheng, Yuxing, 2019. "An adaptive hybrid model for short-term urban traffic flow prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
- Li, Yisha & Chen, Guoxi & Zhang, Ya, 2023. "Cycle-based signal timing with traffic flow prediction for dynamic environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
- Yue Hou & Zhiyuan Deng & Hanke Cui & M. Irfan Uddin, 2021. "Short-Term Traffic Flow Prediction with Weather Conditions: Based on Deep Learning Algorithms and Data Fusion," Complexity, Hindawi, vol. 2021, pages 1-14, January.
- Zhang, Weibin & Zha, Huazhu & Zhang, Shuai & Ma, Lei, 2023. "Road section traffic flow prediction method based on the traffic factor state network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ma, Changxi & Zhao, Mingxi, 2023. "Spatio-temporal multi-graph convolutional network based on wavelet analysis for vehicle speed prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
- Ismail Shah & Izhar Muhammad & Sajid Ali & Saira Ahmed & Mohammed M. A. Almazah & A. Y. Al-Rezami, 2022. "Forecasting Day-Ahead Traffic Flow Using Functional Time Series Approach," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
- Huiming Duan & Xinping Xiao & Lingling Pei, 2017. "Forecasting the Short-Term Traffic Flow in the Intelligent Transportation System Based on an Inertia Nonhomogenous Discrete Gray Model," Complexity, Hindawi, vol. 2017, pages 1-16, July.
- Su-qi Zhang & Kuo-Ping Lin, 2020. "Short-Term Traffic Flow Forecasting Based on Data-Driven Model," Mathematics, MDPI, vol. 8(2), pages 1-17, January.
- Zhang, Weibin & Zha, Huazhu & Zhang, Shuai & Ma, Lei, 2023. "Road section traffic flow prediction method based on the traffic factor state network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
- Cai, Lingru & Zhang, Zhanchang & Yang, Junjie & Yu, Yidan & Zhou, Teng & Qin, Jing, 2019. "A noise-immune Kalman filter for short-term traffic flow forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
- Shao, Feng & Shao, Hu & Wang, Dongle & Lam, William H.K., 2024. "A multi-task spatio-temporal generative adversarial network for prediction of travel time reliability in peak hour periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
- Lahmiri, Salim & Bekiros, Stelios & Bezzina, Frank, 2020. "Multi-fluctuation nonlinear patterns of European financial markets based on adaptive filtering with application to family business, green, Islamic, common stocks, and comparison with Bitcoin, NASDAQ, ," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
- Elena Karnoukhova & Anastasia Stepanova & Maria Kokoreva, 2018. "The Influence Of The Ownership Structure On The Performance Of Innovative Companies In The Us," HSE Working papers WP BRP 70/FE/2018, National Research University Higher School of Economics.
- Huiming Duan & Xinping Xiao, 2019. "A Multimode Dynamic Short-Term Traffic Flow Grey Prediction Model of High-Dimension Tensors," Complexity, Hindawi, vol. 2019, pages 1-18, June.
- Peng, Yanni & Xiang, Wanli, 2020. "Short-term traffic volume prediction using GA-BP based on wavelet denoising and phase space reconstruction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
- Lu, Wenqi & Yi, Ziwei & Wu, Renfei & Rui, Yikang & Ran, Bin, 2022. "Traffic speed forecasting for urban roads: A deep ensemble neural network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
- Wei Zhou & Wei Wang & Xuedong Hua & Yi Zhang, 2020. "Real-Time Traffic Flow Forecasting via a Novel Method Combining Periodic-Trend Decomposition," Sustainability, MDPI, vol. 12(15), pages 1-23, July.
- Wu, Jiaxin & Zhou, Xubing & Peng, Yi & Zhao, Xiaojun, 2022. "Recurrence analysis of urban traffic congestion index on multi-scale," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
- Ling Shen & Jian Lu & Dongdong Geng & Ling Deng, 2020. "Peak Traffic Flow Predictions: Exploiting Toll Data from Large Expressway Networks," Sustainability, MDPI, vol. 13(1), pages 1-18, December.
- Liu, Qingchao & Cai, Yingfeng & Jiang, Haobin & Lu, Jian & Chen, Long, 2018. "Traffic state prediction using ISOMAP manifold learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 532-541.
- Hou, Yue & Zhang, Di & Li, Da & Deng, Zhiyuan, 2024. "Regional traffic flow combination prediction model considering virtual space of the road network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
- Sun, Li & Zhao, Juanjuan & Zhang, Jun & Zhang, Fan & Ye, Kejiang & Xu, Chengzhong, 2024. "Activity-based individual travel regularity exploring with entropy-space K-means clustering using smart card data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
- Naheliya, Bharti & Redhu, Poonam & Kumar, Kranti, 2024. "MFOA-Bi-LSTM: An optimized bidirectional long short-term memory model for short-term traffic flow prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
- Shao, Feng & Shao, Hu & Wang, Dongle & Lam, William H.K. & Cao, Shuhan, 2023. "A generative model for vehicular travel time distribution prediction considering spatial and temporal correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
More about this item
Keywords
Traffic states prediction; Variable-length; Deep learning; Adaptive signal timing; Application scenarios;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:637:y:2024:i:c:s0378437124000748. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.