IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v623y2023ics0378437123004326.html
   My bibliography  Save this article

Cycle-based signal timing with traffic flow prediction for dynamic environment

Author

Listed:
  • Li, Yisha
  • Chen, Guoxi
  • Zhang, Ya

Abstract

This article studies adaptive traffic signal control problem of single intersection in dynamic environment. A novel cycle-based signal timing method with traffic flow prediction (CycleRL) is proposed to improve the traffic efficiency under dynamic traffic flow. Firstly, the empirical mode decomposition is applied to denoise the flow data. Then a data-model hybrid driven traffic flow prediction strategy is designed to predict the traffic flow, which combines a model-based Kalman filter and an LSTM network-based predictor and adopts another Kalman filter to fuse both prediction results to improve the prediction precision. Besides, a robust signal cycle timing strategy based on human–machine collaboration is developed to deal with dynamic traffic flow, which firstly designs a rule-based signal cycle scheme according to the predicted flow data as the preliminary scheme, and then finetunes the preliminary scheme based on Soft Actor–Critic (SAC) algorithm according to the real-time traffic dynamics. The experiments in both synthetic scenario and real-world scenario show that the proposed data-model hybrid driven traffic flow prediction algorithm has better prediction performance and the proposed CycleRL method outperforms rule-based methods, flow-based allocation methods and traditional reinforcement learning method. Moreover, it is also shown that the proposed CycleRL method has better transferability to bridge the discrepancy across domains.

Suggested Citation

  • Li, Yisha & Chen, Guoxi & Zhang, Ya, 2023. "Cycle-based signal timing with traffic flow prediction for dynamic environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
  • Handle: RePEc:eee:phsmap:v:623:y:2023:i:c:s0378437123004326
    DOI: 10.1016/j.physa.2023.128877
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123004326
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128877?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Du, Yu & Kouvelas, Anastasios & ShangGuan, Wei & Makridis, Michail A., 2022. "Dynamic capacity estimation of mixed traffic flows with application in adaptive traffic signal control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    2. Chen, Xinqiang & Chen, Huixing & Yang, Yongsheng & Wu, Huafeng & Zhang, Wenhui & Zhao, Jiansen & Xiong, Yong, 2021. "Traffic flow prediction by an ensemble framework with data denoising and deep learning model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Hai-chao & He, Hong-di & Zhang, Zhe & Ma, Qing-hai & Xue, Xing-kuo & Zhang, Wen-xiu, 2024. "Variable-length traffic state prediction and applications for urban network with adaptive signal timing plan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    2. Ma, Changxi & Zhao, Mingxi, 2023. "Spatio-temporal multi-graph convolutional network based on wavelet analysis for vehicle speed prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shao, Feng & Shao, Hu & Wang, Dongle & Lam, William H.K., 2024. "A multi-task spatio-temporal generative adversarial network for prediction of travel time reliability in peak hour periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    2. Hang Shen & Lin Li & Haihong Zhu & Yu Liu & Zhenwei Luo, 2021. "Exploring a Pricing Model for Urban Rental Houses from a Geographical Perspective," Land, MDPI, vol. 11(1), pages 1-28, December.
    3. Chengmei Wang & Yuchuan Du, 2022. "ELM-Based Non-Singular Fast Terminal Sliding Mode Control Strategy for Vehicle Platoon," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    4. Cankun Wei & Meichen Fu & Li Wang & Hanbing Yang & Feng Tang & Yuqing Xiong, 2022. "The Research Development of Hedonic Price Model-Based Real Estate Appraisal in the Era of Big Data," Land, MDPI, vol. 11(3), pages 1-30, February.
    5. Zhang, Kunpeng & Feng, Xiaoliang & Jia, Ning & Zhao, Liang & He, Zhengbing, 2022. "TSR-GAN: Generative Adversarial Networks for Traffic State Reconstruction with Time Space Diagrams," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    6. Liu, Yang & Song, Yaolun & Zhang, Yan & Liao, Zhifang, 2022. "WT-2DCNN: A convolutional neural network traffic flow prediction model based on wavelet reconstruction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    7. Wu, Jiaxin & Zhou, Xubing & Peng, Yi & Zhao, Xiaojun, 2022. "Recurrence analysis of urban traffic congestion index on multi-scale," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    8. Hu, Xu & Li, Dongshuang & Yu, Zhaoyuan & Yan, Zhenjun & Luo, Wen & Yuan, Linwang, 2022. "Quantum harmonic oscillator model for fine-grained expressway traffic volume simulation considering individual heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    9. Krešimir Kušić & Edouard Ivanjko & Filip Vrbanić & Martin Gregurić & Ivana Dusparic, 2021. "Spatial-Temporal Traffic Flow Control on Motorways Using Distributed Multi-Agent Reinforcement Learning," Mathematics, MDPI, vol. 9(23), pages 1-28, November.
    10. Philip Cammin & Jingjing Yu & Stefan Voß, 2023. "Tiered prediction models for port vessel emissions inventories," Flexible Services and Manufacturing Journal, Springer, vol. 35(1), pages 142-169, March.
    11. Wang, Ke & Ma, Changxi & Qiao, Yihuan & Lu, Xijin & Hao, Weining & Dong, Sheng, 2021. "A hybrid deep learning model with 1DCNN-LSTM-Attention networks for short-term traffic flow prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    12. Peng, Jiali & Shangguan, Wei & Peng, Cong & Chai, Linguo, 2024. "Uncertainty modeling of connected and automated vehicle penetration rate under mixed traffic environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    13. Han, Yu & Zhang, Mingyu & Guo, Yanyong & Zhang, Le, 2022. "A streaming-data-driven method for freeway traffic state estimation using probe vehicle trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    14. Wang, Yun & Xu, Houhua & Song, Mengmeng & Zhang, Fan & Li, Yifen & Zhou, Shengchao & Zhang, Lingjun, 2023. "A convolutional Transformer-based truncated Gaussian density network with data denoising for wind speed forecasting," Applied Energy, Elsevier, vol. 333(C).
    15. Ziwen Song & Feng Sun & Rongji Zhang & Yingcui Du & Guiliang Zhou, 2021. "An Improved Cellular Automaton Traffic Model Based on STCA Model Considering Variable Direction Lanes in I-VICS," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    16. Wang, Kun & Xiong, Li & Xue, Rudan, 2024. "Real-time data stream learning for emergency decision-making under uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    17. Ma, Changxi & Zhao, Mingxi & Huang, Xiaoting & Zhao, Yongpeng, 2024. "Optimized deep extreme learning machine for traffic prediction and autonomous vehicle lane change decision-making," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    18. Salvatore Antonio Biancardo & Francesco Avella & Ernesto Di Lisa & Xinqiang Chen & Francesco Abbondati & Gianluca Dell’Acqua, 2021. "Multiobjective Railway Alignment Optimization Using Ballastless Track and Reduced Cross-Section in Tunnel," Sustainability, MDPI, vol. 13(19), pages 1-19, September.
    19. Shao, Feng & Shao, Hu & Wang, Dongle & Lam, William H.K. & Cao, Shuhan, 2023. "A generative model for vehicular travel time distribution prediction considering spatial and temporal correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    20. Ma, Changxi & Zhao, Mingxi, 2023. "Spatio-temporal multi-graph convolutional network based on wavelet analysis for vehicle speed prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:623:y:2023:i:c:s0378437123004326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.