IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v583y2021ics0378437121005665.html
   My bibliography  Save this article

A hybrid deep learning model with 1DCNN-LSTM-Attention networks for short-term traffic flow prediction

Author

Listed:
  • Wang, Ke
  • Ma, Changxi
  • Qiao, Yihuan
  • Lu, Xijin
  • Hao, Weining
  • Dong, Sheng

Abstract

With the rapid development of social economy, the traffic volume of urban roads has raised significantly, which has led to increasingly serious urban traffic congestion problems, and has caused much inconvenience to people’s travel. By focusing on the complexity and long-term dependence of traffic flow sequences on urban road, this paper considered the traffic flow data and weather conditions of the road section comprehensively, and proposed a short-term traffic flow prediction model based on the attention mechanism and the 1DCNN-LSTM network. The model combined the time expansion of the CNN and the advantages of the long-term memory of the LSTM. First, the model employs 1DCNN network to extract the spatial features in the road traffic flow data. Second, the output spatial features are considered as the input of LSTM neural network to extract the time features in road traffic flow data, and the long-term dependence characteristics of LSTM neural network are adopted to improve the prediction accuracy of traffic flow. Next, the spatio-temporal characteristics of road traffic flow were regarded as the input of the regression prediction layer, and the prediction results corresponding to the current input were calculated. Finally, the attention mechanism was introduced on the LSTM side to give enough attention to the key information, so that the model can focus on learning more important data features, and further improve the prediction performance. The experimental results showed that the prediction effect of the 1DCNN-LSTM-Attention model under the weather factor was better than that without considering the weather factor. At the same time, compared with traditional neural network models, the prediction effect of the proposed model revealed faster convergence speed and higher prediction accuracy. It can be found that for short-term traffic flow prediction on urban roads, the 1DCNN-LSTM network structure considering the attention mechanism provides superior features.

Suggested Citation

  • Wang, Ke & Ma, Changxi & Qiao, Yihuan & Lu, Xijin & Hao, Weining & Dong, Sheng, 2021. "A hybrid deep learning model with 1DCNN-LSTM-Attention networks for short-term traffic flow prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
  • Handle: RePEc:eee:phsmap:v:583:y:2021:i:c:s0378437121005665
    DOI: 10.1016/j.physa.2021.126293
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121005665
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126293?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Anyu & Jiang, Xiao & Li, Yongfu & Zhang, Chao & Zhu, Hao, 2017. "Multiple sources and multiple measures based traffic flow prediction using the chaos theory and support vector regression method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 422-434.
    2. Wang, Wei & Zhang, Hanyu & Li, Tong & Guo, Jianhua & Huang, Wei & Wei, Yun & Cao, Jinde, 2020. "An interpretable model for short term traffic flow prediction," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 264-278.
    3. Liu, Qingchao & Liu, Tao & Cai, Yingfeng & Xiong, Xiaoxia & Jiang, Haobin & Wang, Hai & Hu, Ziniu, 2021. "Explanatory prediction of traffic congestion propagation mode: A self-attention based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    4. Chen, Xinqiang & Chen, Huixing & Yang, Yongsheng & Wu, Huafeng & Zhang, Wenhui & Zhao, Jiansen & Xiong, Yong, 2021. "Traffic flow prediction by an ensemble framework with data denoising and deep learning model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    5. Peng, Yanni & Xiang, Wanli, 2020. "Short-term traffic volume prediction using GA-BP based on wavelet denoising and phase space reconstruction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui, Fei & Wei, Cheng & ShangGuan, Wei & Ando, Ryosuke & Fang, Shan, 2022. "Deep encoder–decoder-NN: A deep learning-based autonomous vehicle trajectory prediction and correction model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    2. Ismail Shah & Izhar Muhammad & Sajid Ali & Saira Ahmed & Mohammed M. A. Almazah & A. Y. Al-Rezami, 2022. "Forecasting Day-Ahead Traffic Flow Using Functional Time Series Approach," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
    3. Li, Baozhu & Lv, Xiaotian & Chen, Jiaxin, 2024. "Demand and supply gap analysis of Chinese new energy vehicle charging infrastructure: Based on CNN-LSTM prediction model," Renewable Energy, Elsevier, vol. 220(C).
    4. Ma, Changxi & Liu, Tao, 2024. "Demand forecasting of shared bicycles based on combined deep learning models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    5. Liu, Longlong & Zhou, Suyu & Jie, Qian & Du, Pei & Xu, Yan & Wang, Jianzhou, 2024. "A robust time-varying weight combined model for crude oil price forecasting," Energy, Elsevier, vol. 299(C).
    6. Wang, Yaguan & Qin, Yong & Guo, Jianyuan & Cao, Zhiwei & Jia, Limin, 2022. "Multi-point short-term prediction of station passenger flow based on temporal multi-graph convolutional network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    7. Zhang, Lei & Zhao, Xin & Zhu, Ge & He, Jun & Chen, Jian & Chen, Zhicheng & Traore, Seydou & Liu, Junguo & Singh, Vijay P., 2023. "Short-term daily reference evapotranspiration forecasting using temperature-based deep learning models in different climate zones in China," Agricultural Water Management, Elsevier, vol. 289(C).
    8. Zhao, Jiandong & Yu, Zhixin & Yang, Xin & Gao, Ziyou & Liu, Wenhui, 2022. "Short term traffic flow prediction of expressway service area based on STL-OMS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    9. Tao, Zihan & Zhang, Chu & Xiong, Jinlin & Hu, Haowen & Ji, Jie & Peng, Tian & Nazir, Muhammad Shahzad, 2023. "Evolutionary gate recurrent unit coupling convolutional neural network and improved manta ray foraging optimization algorithm for performance degradation prediction of PEMFC," Applied Energy, Elsevier, vol. 336(C).
    10. Yang, Di & Li, Hong & Wang, Peng & Yuan, Lihong, 2024. "Multistep traffic speed prediction: A sequence-to-sequence spatio-temporal attention model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    11. Liu, Bingchun & Song, Chengyuan & Liang, Xiaoqin & Lai, Mingzhao & Yu, Zhecheng & Ji, Jie, 2023. "Regional differences in China's electric vehicle sales forecasting: Under supply-demand policy scenarios," Energy Policy, Elsevier, vol. 177(C).
    12. Li, Tao & Liu, Xiangyu & Li, Guannan & Wang, Xing & Ma, Jiangqiaoyu & Xu, Chengliang & Mao, Qianjun, 2024. "A systematic review and comprehensive analysis of building occupancy prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    13. Ma, Changxi & Zhang, Bowen & Li, Shukai & Lu, Youpeng, 2024. "Urban rail transit passenger flow prediction with ResCNN-GRU based on self-attention mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    14. Hu, Guojing & Whalin, Robert W. & Kwembe, Tor A. & Lu, Weike, 2023. "Short-term traffic flow prediction based on secondary hybrid decomposition and deep echo state networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    15. Yan Zheng & Chunjiao Dong & Daiyue Dong & Shengyou Wang, 2021. "Traffic Volume Prediction: A Fusion Deep Learning Model Considering Spatial–Temporal Correlation," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    16. Tian, Jing & Song, Xianmin & Tao, Pengfei & Liang, Jiahui, 2022. "Pattern-adaptive generative adversarial network with sparse data for traffic state estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    17. Liu, Bingchun & Song, Chengyuan & Wang, Qingshan & Zhang, Xinming & Chen, Jiali, 2022. "Research on regional differences of China's new energy vehicles promotion policies: A perspective of sales volume forecasting," Energy, Elsevier, vol. 248(C).
    18. Zheng, Yan & Wang, Shengyou & Dong, Chunjiao & Li, Wenquan & Zheng, Wen & Yu, Jingcai, 2022. "Urban road traffic flow prediction: A graph convolutional network embedded with wavelet decomposition and attention mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    19. Ma, Changxi & Zhao, Mingxi, 2023. "Spatio-temporal multi-graph convolutional network based on wavelet analysis for vehicle speed prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    20. Yan, Jie & Nuertayi, Akejiang & Yan, Yamin & Liu, Shan & Liu, Yongqian, 2023. "Hybrid physical and data driven modeling for dynamic operation characteristic simulation of wind turbine," Renewable Energy, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Jiaxin & Zhou, Xubing & Peng, Yi & Zhao, Xiaojun, 2022. "Recurrence analysis of urban traffic congestion index on multi-scale," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    2. Ma, Changxi & Zhao, Mingxi & Huang, Xiaoting & Zhao, Yongpeng, 2024. "Optimized deep extreme learning machine for traffic prediction and autonomous vehicle lane change decision-making," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    3. Ma, Changxi & Zhao, Mingxi, 2023. "Spatio-temporal multi-graph convolutional network based on wavelet analysis for vehicle speed prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    4. Huiming Duan & Xinping Xiao & Lingling Pei, 2017. "Forecasting the Short-Term Traffic Flow in the Intelligent Transportation System Based on an Inertia Nonhomogenous Discrete Gray Model," Complexity, Hindawi, vol. 2017, pages 1-16, July.
    5. Su-qi Zhang & Kuo-Ping Lin, 2020. "Short-Term Traffic Flow Forecasting Based on Data-Driven Model," Mathematics, MDPI, vol. 8(2), pages 1-17, January.
    6. Zhang, Weibin & Zha, Huazhu & Zhang, Shuai & Ma, Lei, 2023. "Road section traffic flow prediction method based on the traffic factor state network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    7. Shao, Feng & Shao, Hu & Wang, Dongle & Lam, William H.K., 2024. "A multi-task spatio-temporal generative adversarial network for prediction of travel time reliability in peak hour periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    8. Hang Shen & Lin Li & Haihong Zhu & Yu Liu & Zhenwei Luo, 2021. "Exploring a Pricing Model for Urban Rental Houses from a Geographical Perspective," Land, MDPI, vol. 11(1), pages 1-28, December.
    9. Lahmiri, Salim & Bekiros, Stelios & Bezzina, Frank, 2020. "Multi-fluctuation nonlinear patterns of European financial markets based on adaptive filtering with application to family business, green, Islamic, common stocks, and comparison with Bitcoin, NASDAQ, ," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    10. Elena Karnoukhova & Anastasia Stepanova & Maria Kokoreva, 2018. "The Influence Of The Ownership Structure On The Performance Of Innovative Companies In The Us," HSE Working papers WP BRP 70/FE/2018, National Research University Higher School of Economics.
    11. Chengmei Wang & Yuchuan Du, 2022. "ELM-Based Non-Singular Fast Terminal Sliding Mode Control Strategy for Vehicle Platoon," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    12. Chen, Xinqiang & Chen, Huixing & Yang, Yongsheng & Wu, Huafeng & Zhang, Wenhui & Zhao, Jiansen & Xiong, Yong, 2021. "Traffic flow prediction by an ensemble framework with data denoising and deep learning model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    13. Cankun Wei & Meichen Fu & Li Wang & Hanbing Yang & Feng Tang & Yuqing Xiong, 2022. "The Research Development of Hedonic Price Model-Based Real Estate Appraisal in the Era of Big Data," Land, MDPI, vol. 11(3), pages 1-30, February.
    14. Zhang, Kunpeng & Feng, Xiaoliang & Jia, Ning & Zhao, Liang & He, Zhengbing, 2022. "TSR-GAN: Generative Adversarial Networks for Traffic State Reconstruction with Time Space Diagrams," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    15. Liu, Yang & Song, Yaolun & Zhang, Yan & Liao, Zhifang, 2022. "WT-2DCNN: A convolutional neural network traffic flow prediction model based on wavelet reconstruction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    16. Liu, Qingchao & Cai, Yingfeng & Jiang, Haobin & Lu, Jian & Chen, Long, 2018. "Traffic state prediction using ISOMAP manifold learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 532-541.
    17. Hu, Xu & Li, Dongshuang & Yu, Zhaoyuan & Yan, Zhenjun & Luo, Wen & Yuan, Linwang, 2022. "Quantum harmonic oscillator model for fine-grained expressway traffic volume simulation considering individual heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    18. Hou, Yue & Zhang, Di & Li, Da & Deng, Zhiyuan, 2024. "Regional traffic flow combination prediction model considering virtual space of the road network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    19. Yang, Hongtai & Ping, An & Wei, Hongmin & Zhai, Guocong, 2023. "Unique in the metro system: The likelihood to re-identify a metro user with limited trajectory points," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    20. Toan, Trinh Dinh & Wong, Yiik Diew & Lam, Soi Hoi & Meng, Meng, 2022. "Developing a fuzzy-based decision-making procedure for traffic control in expressway congestion management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:583:y:2021:i:c:s0378437121005665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.