An adaptive hybrid model for short-term urban traffic flow prediction
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2019.121065
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wei Zhou & Wei Wang & Xuedong Hua & Yi Zhang, 2020. "Real-Time Traffic Flow Forecasting via a Novel Method Combining Periodic-Trend Decomposition," Sustainability, MDPI, vol. 12(15), pages 1-23, July.
- Sun, Li & Zhao, Juanjuan & Zhang, Jun & Zhang, Fan & Ye, Kejiang & Xu, Chengzhong, 2024. "Activity-based individual travel regularity exploring with entropy-space K-means clustering using smart card data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
- Ismail Shah & Izhar Muhammad & Sajid Ali & Saira Ahmed & Mohammed M. A. Almazah & A. Y. Al-Rezami, 2022. "Forecasting Day-Ahead Traffic Flow Using Functional Time Series Approach," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
- Naheliya, Bharti & Redhu, Poonam & Kumar, Kranti, 2024. "MFOA-Bi-LSTM: An optimized bidirectional long short-term memory model for short-term traffic flow prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
- Shao, Feng & Shao, Hu & Wang, Dongle & Lam, William H.K. & Cao, Shuhan, 2023. "A generative model for vehicular travel time distribution prediction considering spatial and temporal correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
- Lu, Wenqi & Yi, Ziwei & Wu, Renfei & Rui, Yikang & Ran, Bin, 2022. "Traffic speed forecasting for urban roads: A deep ensemble neural network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
- Shao, Feng & Shao, Hu & Wang, Dongle & Lam, William H.K., 2024. "A multi-task spatio-temporal generative adversarial network for prediction of travel time reliability in peak hour periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
- Huang, Hai-chao & He, Hong-di & Zhang, Zhe & Ma, Qing-hai & Xue, Xing-kuo & Zhang, Wen-xiu, 2024. "Variable-length traffic state prediction and applications for urban network with adaptive signal timing plan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
- Peng, Yanni & Xiang, Wanli, 2020. "Short-term traffic volume prediction using GA-BP based on wavelet denoising and phase space reconstruction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
More about this item
Keywords
Adaptive hybrid model; Traffic flow prediction; ARIMA method; Urban traffic flow;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:527:y:2019:i:c:s0378437119306508. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.