IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v618y2023ics0378437123002674.html
   My bibliography  Save this article

Road section traffic flow prediction method based on the traffic factor state network

Author

Listed:
  • Zhang, Weibin
  • Zha, Huazhu
  • Zhang, Shuai
  • Ma, Lei

Abstract

Large-scale and diversified traffic data resources strongly support research into estimating urban traffic states and predicting traffic flow. There are many studies on traffic prediction, but there is still not a universally applicable real-world traffic flow prediction method. This paper regards urban road sections as a microscopic traffic system. Based on a deep understanding of the traffic state of road sections, it proposes a pertinent traffic flow prediction framework based on the traffic factor state network (TFSN) framework by combining model-driven methods with machine learning to identify traffic patterns in road sections. For different road traffic patterns, it proves mathematically that the state of traffic flow in each period tends to be the state of the corresponding period with greater probability. According to different road patterns and traffic states, suitable traffic flow modeling and prediction methods were selected. The case shows that this method can improve the accuracy of traffic flow predictions. The research results demonstrate that the average absolute percentage error of traffic flow predictions in urban sections selected with different characteristics and models is reduced by 7.51% compared with the direct prediction error method, verifying the effectiveness and usability of the proposed prediction framework.

Suggested Citation

  • Zhang, Weibin & Zha, Huazhu & Zhang, Shuai & Ma, Lei, 2023. "Road section traffic flow prediction method based on the traffic factor state network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
  • Handle: RePEc:eee:phsmap:v:618:y:2023:i:c:s0378437123002674
    DOI: 10.1016/j.physa.2023.128712
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123002674
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128712?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Anyu & Jiang, Xiao & Li, Yongfu & Zhang, Chao & Zhu, Hao, 2017. "Multiple sources and multiple measures based traffic flow prediction using the chaos theory and support vector regression method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 422-434.
    2. J. A. Hartigan & M. A. Wong, 1979. "A K‐Means Clustering Algorithm," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(1), pages 100-108, March.
    3. Huang, Haichao & Chen, Jingya & Sun, Rui & Wang, Shuang, 2022. "Short-term traffic prediction based on time series decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    4. Zheng, Yan & Wang, Shengyou & Dong, Chunjiao & Li, Wenquan & Zheng, Wen & Yu, Jingcai, 2022. "Urban road traffic flow prediction: A graph convolutional network embedded with wavelet decomposition and attention mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    5. Liu, Yang & Song, Yaolun & Zhang, Yan & Liao, Zhifang, 2022. "WT-2DCNN: A convolutional neural network traffic flow prediction model based on wavelet reconstruction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    6. Zhao, Jiandong & Yu, Zhixin & Yang, Xin & Gao, Ziyou & Liu, Wenhui, 2022. "Short term traffic flow prediction of expressway service area based on STL-OMS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Yue & Zhang, Di & Li, Da & Deng, Zhiyuan, 2024. "Regional traffic flow combination prediction model considering virtual space of the road network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    2. Huang, Hai-chao & He, Hong-di & Zhang, Zhe & Ma, Qing-hai & Xue, Xing-kuo & Zhang, Wen-xiu, 2024. "Variable-length traffic state prediction and applications for urban network with adaptive signal timing plan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    3. Ma, Changxi & Zhao, Mingxi, 2023. "Spatio-temporal multi-graph convolutional network based on wavelet analysis for vehicle speed prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Changxi & Zhao, Mingxi, 2023. "Spatio-temporal multi-graph convolutional network based on wavelet analysis for vehicle speed prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    2. Sun, Xiaoyong & Chen, Fenghao & Wang, Yuchen & Lin, Xuefen & Ma, Weifeng, 2023. "Short-term traffic flow prediction model based on a shared weight gate recurrent unit neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    3. Huiming Duan & Xinping Xiao & Lingling Pei, 2017. "Forecasting the Short-Term Traffic Flow in the Intelligent Transportation System Based on an Inertia Nonhomogenous Discrete Gray Model," Complexity, Hindawi, vol. 2017, pages 1-16, July.
    4. Xu, Jing & Wang, Xiaoying & Gu, Yujiong & Ma, Suxia, 2023. "A data-based day-ahead scheduling optimization approach for regional integrated energy systems with varying operating conditions," Energy, Elsevier, vol. 283(C).
    5. Carlos Carrasco-Farré, 2022. "The fingerprints of misinformation: how deceptive content differs from reliable sources in terms of cognitive effort and appeal to emotions," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-18, December.
    6. Felix Mbuga & Cristina Tortora, 2021. "Spectral Clustering of Mixed-Type Data," Stats, MDPI, vol. 5(1), pages 1-11, December.
    7. Su-qi Zhang & Kuo-Ping Lin, 2020. "Short-Term Traffic Flow Forecasting Based on Data-Driven Model," Mathematics, MDPI, vol. 8(2), pages 1-17, January.
    8. Cai, Lingru & Zhang, Zhanchang & Yang, Junjie & Yu, Yidan & Zhou, Teng & Qin, Jing, 2019. "A noise-immune Kalman filter for short-term traffic flow forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    9. Michal Bernardelli & Zbigniew Korzeb & Pawel Niedziolka, 2021. "The banking sector as the absorber of the COVID-19 crisis’ economic consequences: perception of WSE investors," Oeconomia Copernicana, Institute of Economic Research, vol. 12(2), pages 335-374, June.
    10. Jelle R Dalenberg & Luca Nanetti & Remco J Renken & René A de Wijk & Gert J ter Horst, 2014. "Dealing with Consumer Differences in Liking during Repeated Exposure to Food; Typical Dynamics in Rating Behavior," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    11. Custodio João, Igor & Lucas, André & Schaumburg, Julia & Schwaab, Bernd, 2023. "Dynamic clustering of multivariate panel data," Journal of Econometrics, Elsevier, vol. 237(2).
    12. Carlos Fernández-Hernández & Carmelo J. León & Jorge E. Araña & Flora Díaz-Pére, 2016. "Market segmentation, activities and environmental behaviour in rural tourism," Tourism Economics, , vol. 22(5), pages 1033-1054, October.
    13. Hafid Kadi & Mohammed Rebbah & Boudjelal Meftah & Olivier Lézoray, 2021. "A Data Representation Model for Personalized Medicine," International Journal of Healthcare Information Systems and Informatics (IJHISI), IGI Global, vol. 16(4), pages 1-25, October.
    14. Zhang, Tonglin & Lin, Ge, 2021. "Generalized k-means in GLMs with applications to the outbreak of COVID-19 in the United States," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    15. Andreas Lackner & Michael Müller & Magdalena Gamperl & Delyana Stoeva & Olivia Langmann & Henrieta Papuchova & Elisabeth Roitinger & Gerhard Dürnberger & Richard Imre & Karl Mechtler & Paulina A. Lato, 2023. "The Fgf/Erf/NCoR1/2 repressive axis controls trophoblast cell fate," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    16. Utkarsh J. Dang & Michael P.B. Gallaugher & Ryan P. Browne & Paul D. McNicholas, 2023. "Model-Based Clustering and Classification Using Mixtures of Multivariate Skewed Power Exponential Distributions," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 145-167, April.
    17. Beibei Yu & Zhonghui Wang & Haowei Mu & Li Sun & Fengning Hu, 2019. "Identification of Urban Functional Regions Based on Floating Car Track Data and POI Data," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    18. Liguo Fei & Jun Xia & Yuqiang Feng & Luning Liu, 2019. "A novel method to determine basic probability assignment in Dempster–Shafer theory and its application in multi-sensor information fusion," International Journal of Distributed Sensor Networks, , vol. 15(7), pages 15501477198, July.
    19. Lahmiri, Salim & Bekiros, Stelios & Bezzina, Frank, 2020. "Multi-fluctuation nonlinear patterns of European financial markets based on adaptive filtering with application to family business, green, Islamic, common stocks, and comparison with Bitcoin, NASDAQ, ," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    20. Elena Karnoukhova & Anastasia Stepanova & Maria Kokoreva, 2018. "The Influence Of The Ownership Structure On The Performance Of Innovative Companies In The Us," HSE Working papers WP BRP 70/FE/2018, National Research University Higher School of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:618:y:2023:i:c:s0378437123002674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.