IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6662959.html
   My bibliography  Save this article

Short-Term Traffic Flow Prediction with Weather Conditions: Based on Deep Learning Algorithms and Data Fusion

Author

Listed:
  • Yue Hou
  • Zhiyuan Deng
  • Hanke Cui
  • M. Irfan Uddin

Abstract

Short-term traffic flow prediction is an effective means for intelligent transportation system (ITS) to mitigate traffic congestion. However, traffic flow data with temporal features and periodic characteristics are vulnerable to weather effects, making short-term traffic flow prediction a challenging issue. However, the existing models do not consider the influence of weather changes on traffic flow, leading to poor performance under some extreme conditions. In view of the rich features of traffic data and the characteristic of being vulnerable to external weather conditions, the prediction model based on traffic data has certain limitations, so it is necessary to conduct research studies on traffic flow prediction driven by both the traffic data and weather data. This paper proposes a combined framework of stacked autoencoder (SAE) and radial basis function (RBF) neural network to predict traffic flow, which can effectively capture the temporal correlation and periodicity of traffic flow data and disturbance of weather factors. Firstly, SAE is used to process the traffic flow data in multiple time slices to acquire a preliminary prediction. Then, RBF is used to capture the relation between weather disturbance and periodicity of traffic flow so as to gain another prediction. Finally, another RBF is used for the fusion of the above two predictions on decision level, obtaining a reconstructed prediction with higher accuracy. The effectiveness and robustness of the proposed model are verified by experiments.

Suggested Citation

  • Yue Hou & Zhiyuan Deng & Hanke Cui & M. Irfan Uddin, 2021. "Short-Term Traffic Flow Prediction with Weather Conditions: Based on Deep Learning Algorithms and Data Fusion," Complexity, Hindawi, vol. 2021, pages 1-14, January.
  • Handle: RePEc:hin:complx:6662959
    DOI: 10.1155/2021/6662959
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/6662959.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/6662959.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6662959?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ismail Shah & Izhar Muhammad & Sajid Ali & Saira Ahmed & Mohammed M. A. Almazah & A. Y. Al-Rezami, 2022. "Forecasting Day-Ahead Traffic Flow Using Functional Time Series Approach," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
    2. Huang, Hai-chao & He, Hong-di & Zhang, Zhe & Ma, Qing-hai & Xue, Xing-kuo & Zhang, Wen-xiu, 2024. "Variable-length traffic state prediction and applications for urban network with adaptive signal timing plan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    3. Tang, Jinjun & Zhao, Chuyun & Liu, Fang & Hao, Wei & Gao, Fan, 2022. "Analyzing travel destinations distribution using large-scaled GPS trajectories: A spatio-temporal Log-Gaussian Cox process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6662959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.