IDEAS home Printed from https://ideas.repec.org/a/wsi/acsxxx/v06y2003i02ns0219525903000803.html
   My bibliography  Save this article

Congestion And Centrality In Traffic Flow On Complex Networks

Author

Listed:
  • PETTER HOLME

    (Department of Physics, Umeå University, 901 87 Umeå, Sweden)

Abstract

The central points of communication network flow have often been identified using graph theoretical centrality measures. In real networks, the state of traffic density arises from an interplay between the dynamics of the flow and the underlying network structure. In this work we investigate the relationship between centrality measures and the density of traffic for some simple particle hopping models on networks with emerging scale-free degree distributions. We also study how the speed of the dynamics are affected by the underlying network structure. Among other conclusions, we find that, even at low traffic densities, the dynamical measure of traffic density (the occupation ratio) has a non-trivial dependence on the static centrality (quantified by "betweenness centrality"), where non-central vertices get a comparatively large portion of the traffic.

Suggested Citation

  • Petter Holme, 2003. "Congestion And Centrality In Traffic Flow On Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 6(02), pages 163-176.
  • Handle: RePEc:wsi:acsxxx:v:06:y:2003:i:02:n:s0219525903000803
    DOI: 10.1142/S0219525903000803
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219525903000803
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219525903000803?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Batac, Rene C. & Cirunay, Michelle T., 2022. "Shortest paths along urban road network peripheries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    2. Wang, Weiping & Yang, Saini & Hu, Fuyu & Stanley, H. Eugene & He, Shuai & Shi, Mimi, 2018. "An approach for cascading effects within critical infrastructure systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 164-177.
    3. Wang, Yuhong & Cullinane, Kevin, 2016. "Determinants of port centrality in maritime container transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 326-340.
    4. Rui Ding & Norsidah Ujang & Hussain Bin Hamid & Mohd Shahrudin Abd Manan & Rong Li & Safwan Subhi Mousa Albadareen & Ashkan Nochian & Jianjun Wu, 2019. "Application of Complex Networks Theory in Urban Traffic Network Researches," Networks and Spatial Economics, Springer, vol. 19(4), pages 1281-1317, December.
    5. Wang, Zi-Yi & Han, Jing-Ti & Zhao, Jun, 2017. "Identifying node spreading influence for tunable clustering coefficient networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 242-250.
    6. Ribas, Lucas C. & Bruno, Odemir M., 2020. "Dynamic texture analysis using networks generated by deterministic partially self-avoiding walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    7. Cirunay, Michelle T. & Batac, Rene C., 2023. "Evolution of the periphery of a self-organized road network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    8. Wang, Duo & Sipahi, Rifat, 2024. "Betweenness centrality can inform stability and delay margin in a large-scale connected vehicle system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    9. Bilong Shen & Weimin Zheng & Kathleen M. Carley, 2018. "Urban Activity Mining Framework for Ride Sharing Systems Based on Vehicular Social Networks," Networks and Spatial Economics, Springer, vol. 18(3), pages 705-734, September.
    10. Angelo Furno & Nour-Eddin El Faouzi & Rajesh Sharma & Eugenio Zimeo, 2021. "Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-35, March.
    11. Rui Ding & Jian Yin & Peng Dai & Lu Jiao & Rong Li & Tongfei Li & Jianjun Wu, 2019. "Optimal Topology of Multilayer Urban Traffic Networks," Complexity, Hindawi, vol. 2019, pages 1-19, October.
    12. Wang, Shao-Ping & Pei, Wen-Jiang, 2008. "First passage time of multiple Brownian particles on networks with applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(18), pages 4699-4708.
    13. Wen, Tzai-Hung & Chin, Wei-Chien-Benny & Lai, Pei-Chun, 2017. "Understanding the topological characteristics and flow complexity of urban traffic congestion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 166-177.
    14. Tam, Wai M. & Lau, Francis C.M. & Tse, Chi K. & Xia, Yongxiang & Shan, Xiuming, 2006. "Effect of clustering in a complex user network on the telephone traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 745-753.
    15. Ghosh, Saptarshi & Banerjee, Avishek & Ganguly, Niloy, 2012. "Some insights on the recent spate of accidents in Indian Railways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(9), pages 2917-2929.
    16. Xiangyang Cao & Bingzhong Zhou & Qiang Tang & Jiaqi Li & Donghui Shi, 2018. "Urban Wasteful Transport and Its Estimation Methods," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    17. Perez, Yuri & Pereira, Fabio Henrique, 2021. "Simulation of traffic light disruptions in street networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:acsxxx:v:06:y:2003:i:02:n:s0219525903000803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/acs/acs.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.