IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v449y2016icp311-323.html
   My bibliography  Save this article

Empirical evidence and stability analysis of the linear car-following model with gamma-distributed memory effect

Author

Listed:
  • Pei, Xin
  • Pan, Yan
  • Wang, Haixin
  • Wong, S.C.
  • Choi, Keechoo

Abstract

Car-following models, which describe the reactions of the driver of a following car to the changes of the leading car, are essential for the development of traffic flow theory. A car-following model with a stochastic memory effect is considered to be more realistic in modeling drivers’ behavior. Because a gamma-distributed memory function has been shown to outperform other forms according to empirical data, in this study, we thus focus on a car-following model with a gamma-distributed memory effect; analytical and numerical studies are then conducted for stability analysis. Accordingly, the general expression of undamped and stability points is achieved by analytical study. The numerical results show great agreement with the analytical results: introducing the effect of the driver’s memory causes the stable regions to weaken slightly, but the metastable region is obviously enlarged. In addition, a numerical study is performed to further analyze the variation of the stable and unstable regions with respect to the different profiles of gamma distribution.

Suggested Citation

  • Pei, Xin & Pan, Yan & Wang, Haixin & Wong, S.C. & Choi, Keechoo, 2016. "Empirical evidence and stability analysis of the linear car-following model with gamma-distributed memory effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 311-323.
  • Handle: RePEc:eee:phsmap:v:449:y:2016:i:c:p:311-323
    DOI: 10.1016/j.physa.2015.12.104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115011413
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.12.104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Treiber, Martin & Kesting, Arne & Helbing, Dirk, 2006. "Delays, inaccuracies and anticipation in microscopic traffic models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(1), pages 71-88.
    2. Robert E. Chandler & Robert Herman & Elliott W. Montroll, 1958. "Traffic Dynamics: Studies in Car Following," Operations Research, INFORMS, vol. 6(2), pages 165-184, April.
    3. Cao, Bao-gui, 2015. "A new car-following model considering driver’s sensory memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 218-225.
    4. Gentry Lee, 1966. "A Generalization of Linear Car-Following Theory," Operations Research, INFORMS, vol. 14(4), pages 595-606, August.
    5. Zhang, H. M., 2003. "Driver memory, traffic viscosity and a viscous vehicular traffic flow model," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 27-41, January.
    6. Yu, Shaowei & Shi, Zhongke, 2015. "The effects of vehicular gap changes with memory on traffic flow in cooperative adaptive cruise control strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 206-223.
    7. Yu, Shaowei & Shi, Zhongke, 2015. "An improved car-following model considering headway changes with memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 1-14.
    8. G. F. Newell, 1961. "Nonlinear Effects in the Dynamics of Car Following," Operations Research, INFORMS, vol. 9(2), pages 209-229, April.
    9. Robert Herman & Elliott W. Montroll & Renfrey B. Potts & Richard W. Rothery, 1959. "Traffic Dynamics: Analysis of Stability in Car Following," Operations Research, INFORMS, vol. 7(1), pages 86-106, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Jinchen & Peng, Mingshu, 2016. "Stability and bifurcation analysis for the Kaldor–Kalecki model with a discrete delay and a distributed delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 66-75.
    2. Wang, Xiao & Jiang, Rui & Li, Li & Lin, Yi-Lun & Wang, Fei-Yue, 2019. "Long memory is important: A test study on deep-learning based car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 786-795.
    3. Zhai, Cong & Li, Kening & Zhang, Ronghui & Peng, Tao & Zong, Changfu, 2024. "Phase diagram in multi-phase heterogeneous traffic flow model integrating the perceptual range difference under human-driven and connected vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Lu & Jafaripournimchahi, Ammar & Kornhauser, Alain & Hu, Wushen, 2020. "A new higher-order viscous continuum traffic flow model considering driver memory in the era of autonomous and connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    2. Qingtao, Zhai & Hongxia, Ge & Rongjun, Cheng, 2018. "An extended continuum model considering optimal velocity change with memory and numerical tests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 774-785.
    3. Yu, Shaowei & Huang, Mengxing & Ren, Jia & Shi, Zhongke, 2016. "An improved car-following model considering velocity fluctuation of the immediately ahead car," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 1-17.
    4. Hongxing Zhao & Ruichun He & Xiaoyan Jia, 2019. "Estimation and Analysis of Vehicle Exhaust Emissions at Signalized Intersections Using a Car-Following Model," Sustainability, MDPI, vol. 11(14), pages 1-25, July.
    5. Jin, Wen-Long, 2016. "On the equivalence between continuum and car-following models of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 543-559.
    6. Cheng, Rongjun & Ge, Hongxia & Sun, Fengxin & Wang, Jufeng, 2018. "An extended macro model accounting for acceleration changes with memory and numerical tests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 270-283.
    7. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2019. "An extended car-following model considering driver’s memory and average speed of preceding vehicles with control strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 752-761.
    8. Yifan Pan & Yongjiang Wang & Baobin Miao & Rongjun Cheng, 2022. "Stabilization Strategy of a Novel Car-Following Model with Time Delay and Memory Effect of the Driver," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    9. Wang, Duo & Sipahi, Rifat, 2024. "Betweenness centrality can inform stability and delay margin in a large-scale connected vehicle system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    10. Yin, Yu-Hang & Lü, Xing & Jiang, Rui & Jia, Bin & Gao, Ziyou, 2024. "Kinetic analysis and numerical tests of an adaptive car-following model for real-time traffic in ITS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    11. Tordeux, Antoine & Lassarre, Sylvain & Roussignol, Michel, 2010. "An adaptive time gap car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1115-1131, September.
    12. Jiang, Rui & Hu, Mao-Bin & Zhang, H.M. & Gao, Zi-You & Jia, Bin & Wu, Qing-Song, 2015. "On some experimental features of car-following behavior and how to model them," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 338-354.
    13. Xin Chang & Xingjian Zhang & Haichao Li & Chang Wang & Zhe Liu, 2022. "A Survey on Mixed Traffic Flow Characteristics in Connected Vehicle Environments," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    14. Bouadi, Marouane & Jia, Bin & Jiang, Rui & Li, Xingang & Gao, Zi-You, 2022. "Stochastic factors and string stability of traffic flow: Analytical investigation and numerical study based on car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 96-122.
    15. Cheng, Qixiu & Liu, Zhiyuan & Lin, Yuqian & Zhou, Xuesong (Simon), 2021. "An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 246-271.
    16. Holland, E. N., 1998. "A generalised stability criterion for motorway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 32(2), pages 141-154, February.
    17. Jiang, Yangsheng & Cong, Hongwei & Chen, Hongyu & Wu, Yunxia & Yao, Zhihong, 2024. "Adaptive cruise control design for collision risk avoidance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    18. Hamdar, Samer H. & Mahmassani, Hani S. & Treiber, Martin, 2015. "From behavioral psychology to acceleration modeling: Calibration, validation, and exploration of drivers’ cognitive and safety parameters in a risk-taking environment," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 32-53.
    19. Piyush Dhawankar & Prashant Agrawal & Bilal Abderezzak & Omprakash Kaiwartya & Krishna Busawon & Maria Simona Raboacă, 2021. "Design and Numerical Implementation of V2X Control Architecture for Autonomous Driving Vehicles," Mathematics, MDPI, vol. 9(14), pages 1-24, July.
    20. Qu, Xiaobo & Yu, Yang & Zhou, Mofan & Lin, Chin-Teng & Wang, Xiangyu, 2020. "Jointly dampening traffic oscillations and improving energy consumption with electric, connected and automated vehicles: A reinforcement learning based approach," Applied Energy, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:449:y:2016:i:c:p:311-323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.