IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v633y2024ics0378437123009512.html
   My bibliography  Save this article

Dynamics of market states and risk assessment

Author

Listed:
  • Pharasi, Hirdesh K.
  • Seligman, Eduard
  • Sadhukhan, Suchetana
  • Majari, Parisa
  • Seligman, Thomas H.

Abstract

Previous research explored various conditions of financial markets based on the similarity of correlation structures and classified as market states. We introduce modifications to previous selection criteria for these market states, mainly due to increased attention to the transition matrix between the states. Clustering and thus market states are fixed by the optimization of two parameters — number of clusters and noise-suppression, but in similar conditions, we give preference to the clustering which avoids large jumps in the transition matrix. We found statistically significant results applying this model to the S&P 500 and Nikkei 225 markets for the pre-COVID-19 pandemic era (2006–2019). Retaining the epoch length of 20 trading days but reducing the shift of the epoch to a single trading day we are led to the concept of a trajectory of the market in the space of correlation matrices. We may visualize these states after dimensional scaling to two or three dimensions. This approach, using dynamics, improves the options of risk assessment, opens the door to dynamical treatments of markets (e.g. hedging), and shows noise-suppression in a new light.

Suggested Citation

  • Pharasi, Hirdesh K. & Seligman, Eduard & Sadhukhan, Suchetana & Majari, Parisa & Seligman, Thomas H., 2024. "Dynamics of market states and risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
  • Handle: RePEc:eee:phsmap:v:633:y:2024:i:c:s0378437123009512
    DOI: 10.1016/j.physa.2023.129396
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123009512
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129396?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vasiliki Plerou & Parameswaran Gopikrishnan & Bernd Rosenow & Luis A. Nunes Amaral & H. Eugene Stanley, 1999. "Universal and non-universal properties of cross-correlations in financial time series," Papers cond-mat/9902283, arXiv.org.
    2. Yuriy Stepanov & Philip Rinn & Thomas Guhr & Joachim Peinke & Rudi Schafer, 2015. "Stability and Hierarchy of Quasi-Stationary States: Financial Markets as an Example," Papers 1503.00556, arXiv.org.
    3. Back, Kerry & Pedersen, Hal, 1998. "Long-lived information and intraday patterns," Journal of Financial Markets, Elsevier, vol. 1(3-4), pages 385-402, September.
    4. Sarwar, Ghulam, 2023. "Market risks that change US-European equity correlations," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 83(C).
    5. Michael C. Munnix & Takashi Shimada & Rudi Schafer & Francois Leyvraz Thomas H. Seligman & Thomas Guhr & H. E. Stanley, 2012. "Identifying States of a Financial Market," Papers 1202.1623, arXiv.org.
    6. Areejit Samal & Hirdesh K. Pharasi & Sarath Jyotsna Ramaia & Harish Kannan & Emil Saucan & Jurgen Jost & Anirban Chakraborti, 2020. "Network geometry and market instability," Papers 2009.12335, arXiv.org, revised Jan 2021.
    7. Zhang, Dayong & Hu, Min & Ji, Qiang, 2020. "Financial markets under the global pandemic of COVID-19," Finance Research Letters, Elsevier, vol. 36(C).
    8. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    9. Chiang, Thomas C. & Jeon, Bang Nam & Li, Huimin, 2007. "Dynamic correlation analysis of financial contagion: Evidence from Asian markets," Journal of International Money and Finance, Elsevier, vol. 26(7), pages 1206-1228, November.
    10. Manel Youssef & Khaled Mokni & Ahdi Noomen Ajmi, 2021. "Dynamic connectedness between stock markets in the presence of the COVID-19 pandemic: does economic policy uncertainty matter?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.
    11. William N. Goetzmann & Lingfeng Li & K. Geert Rouwenhorst, 2005. "Long-Term Global Market Correlations," The Journal of Business, University of Chicago Press, vol. 78(1), pages 1-38, January.
    12. Simon van Norden & Huntley Schaller & ), 1995. "Regime Switching in Stock Market Returns," Econometrics 9502002, University Library of Munich, Germany.
    13. Matteo Marsili, 2002. "Dissecting financial markets: Sectors and states," Papers cond-mat/0207156, arXiv.org.
    14. Matteo Marsili, 2002. "Dissecting financial markets: sectors and states," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 297-302.
    15. Rudi Schafer & Nils Fredrik Nilsson & Thomas Guhr, 2010. "Power mapping with dynamical adjustment for improved portfolio optimization," Quantitative Finance, Taylor & Francis Journals, vol. 10(1), pages 107-119.
    16. Anat R. Admati, Paul Pfleiderer, 1988. "A Theory of Intraday Patterns: Volume and Price Variability," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 3-40.
    17. Laurent Laloux & Pierre Cizeau & Marc Potters & Jean-Philippe Bouchaud, 2000. "Random Matrix Theory And Financial Correlations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 391-397.
    18. Desislava Chetalova & Marcel Wollschlager & Rudi Schafer, 2015. "Dependence structure of market states," Papers 1503.09004, arXiv.org, revised Jul 2015.
    19. Frederik Meudt & Martin Theissen & Rudi Schafer & Thomas Guhr, 2015. "Constructing Analytically Tractable Ensembles of Non-Stationary Covariances with an Application to Financial Data," Papers 1503.01584, arXiv.org, revised Jul 2015.
    20. A. Chakraborti & I. Muni-Toke & M. Patriarca & F. Abergel, 2011. "Econophysics Review : II. Agent-based models," Post-Print hal-03332946, HAL.
    21. Anton J. Heckens & Sebastian M. Krause & Thomas Guhr, 2020. "Uncovering the Dynamics of Correlation Structures Relative to the Collective Market Motion," Papers 2004.12336, arXiv.org, revised Sep 2020.
    22. Philip Rinn & Yuriy Stepanov & Joachim Peinke & Thomas Guhr & Rudi Schafer, 2015. "Dynamics of quasi-stationary systems: Finance as an example," Papers 1502.07522, arXiv.org.
    23. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    24. Hirdesh K. Pharasi & Eduard Seligman & Thomas H. Seligman, 2020. "Market states: A new understanding," Papers 2003.07058, arXiv.org, revised Nov 2020.
    25. Thomas Guhr & Andreas Schell, 2020. "Exact Multivariate Amplitude Distributions for Non-Stationary Gaussian or Algebraic Fluctuations of Covariances or Correlations," Papers 2011.07570, arXiv.org.
    26. Hirdesh K. Pharasi & Kiran Sharma & Rakesh Chatterjee & Anirban Chakraborti & Francois Leyvraz & Thomas H. Seligman, 2018. "Identifying long-term precursors of financial market crashes using correlation patterns," Papers 1809.00885, arXiv.org, revised Sep 2018.
    27. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heckens, Anton J. & Guhr, Thomas, 2022. "New collectivity measures for financial covariances and correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    2. Hirdesh K. Pharasi & Suchetana Sadhukhan & Parisa Majari & Anirban Chakraborti & Thomas H. Seligman, 2021. "Dynamics of the market states in the space of correlation matrices with applications to financial markets," Papers 2107.05663, arXiv.org.
    3. Hirdesh K. Pharasi & Kiran Sharma & Anirban Chakraborti & Thomas H. Seligman, 2018. "Complex market dynamics in the light of random matrix theory," Papers 1809.07100, arXiv.org, revised Sep 2018.
    4. Martin He{ss}ler & Tobias Wand & Oliver Kamps, 2023. "Efficient Multi-Change Point Analysis to decode Economic Crisis Information from the S&P500 Mean Market Correlation," Papers 2308.00087, arXiv.org.
    5. Upadhyay, Shashankaditya & Mukherjee, Indranil & Panigrahi, Prasanta K., 2023. "Inner composition alignment networks reveal financial impacts of COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    6. Kiran Sharma & Subhradeep Das & Anirban Chakraborti, 2017. "Global Income Inequality and Savings: A Data Science Perspective," Papers 1801.00253, arXiv.org, revised Aug 2018.
    7. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    8. Hong Guo & Jianwu Lin & Fanlin Huang, 2023. "Market Making with Deep Reinforcement Learning from Limit Order Books," Papers 2305.15821, arXiv.org.
    9. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2019. "A Statistical Field Approach to Capital Accumulation," Working Papers hal-02280634, HAL.
    10. Zhang, Jiu & Jin, Li-Fu & Zheng, Bo & Li, Yan & Jiang, Xiong-Fei, 2022. "Simplified calculations of time correlation functions in non-stationary complex financial systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    11. repec:hal:wpaper:hal-00777941 is not listed on IDEAS
    12. Ivan Jericevich & Patrick Chang & Tim Gebbie, 2021. "Simulation and estimation of an agent-based market-model with a matching engine," Papers 2108.07806, arXiv.org, revised Aug 2021.
    13. Inoua, Sabiou M. & Smith, Vernon L., 2023. "A classical model of speculative asset price dynamics," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    14. Gosselin, Pierre & Lotz, Aïleen & Wambst, Marc, 2017. "A Path Integral Approach to Interacting Economic Systems with Multiple Heterogeneous Agents," MPRA Paper 79488, University Library of Munich, Germany.
    15. Nikolaos Th. Chatzarakis, 2021. "Revisiting the role and consequences of Econophysics from a Marxian perspective," Bulletin of Political Economy, Bulletin of Political Economy, vol. 15(1), pages 45-68, June.
    16. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2020. "A path integral approach to business cycle models with large number of agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(4), pages 899-942, October.
    17. Martin Šmíd, 2016. "Estimation of zero-intelligence models by L1 data," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1423-1444, September.
    18. Salvador Pueyo, 2013. "Is it a power law distribution? The case of economic contractions," Papers 1310.2567, arXiv.org.
    19. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2021. "A statistical field approach to capital accumulation," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(4), pages 817-908, October.
    20. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2018. "A Path Integral Approach to Business Cycle Models with Large Number of Agents," Working Papers hal-01893556, HAL.
    21. Christoph J. Borner & Ingo Hoffmann & John H. Stiebel, 2024. "A closer look at the chemical potential of an ideal agent system," Papers 2401.09233, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:633:y:2024:i:c:s0378437123009512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.