IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1809.07100.html
   My bibliography  Save this paper

Complex market dynamics in the light of random matrix theory

Author

Listed:
  • Hirdesh K. Pharasi
  • Kiran Sharma
  • Anirban Chakraborti
  • Thomas H. Seligman

Abstract

We present a brief overview of random matrix theory (RMT) with the objectives of highlighting the computational results and applications in financial markets as complex systems. An oft-encountered problem in computational finance is the choice of an appropriate epoch over which the empirical cross-correlation return matrix is computed. A long epoch would smoothen the fluctuations in the return time series and suffers from non-stationarity, whereas a short epoch results in noisy fluctuations in the return time series and the correlation matrices turn out to be highly singular. An effective method to tackle this issue is the use of the power mapping, where a non-linear distortion is applied to a short epoch correlation matrix. The value of distortion parameter controls the noise-suppression. The distortion also removes the degeneracy of zero eigenvalues. Depending on the correlation structures, interesting properties of the eigenvalue spectra are found. We simulate different correlated Wishart matrices to compare the results with empirical return matrices computed using the S&P 500 (USA) market data for the period 1985-2016. We also briefly review two recent applications of RMT in financial stock markets: (i) Identification of "market states" and long-term precursor to a critical state; (ii) Characterization of catastrophic instabilities (market crashes).

Suggested Citation

  • Hirdesh K. Pharasi & Kiran Sharma & Anirban Chakraborti & Thomas H. Seligman, 2018. "Complex market dynamics in the light of random matrix theory," Papers 1809.07100, arXiv.org, revised Sep 2018.
  • Handle: RePEc:arx:papers:1809.07100
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1809.07100
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anirban Chakraborti & Kiran Sharma & Hirdesh K. Pharasi & Sourish Das & Rakesh Chatterjee & Thomas H. Seligman, 2018. "Characterization of catastrophic instabilities: Market crashes as paradigm," Papers 1801.07213, arXiv.org.
    2. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    3. Vasiliki Plerou & Parameswaran Gopikrishnan & Bernd Rosenow & Luis A. Nunes Amaral & H. Eugene Stanley, 1999. "Universal and non-universal properties of cross-correlations in financial time series," Papers cond-mat/9902283, arXiv.org.
    4. Michael C. Munnix & Takashi Shimada & Rudi Schafer & Francois Leyvraz Thomas H. Seligman & Thomas Guhr & H. E. Stanley, 2012. "Identifying States of a Financial Market," Papers 1202.1623, arXiv.org.
    5. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169, October.
    6. A. Chakraborti & M. Patriarca & M. S. Santhanam, 2007. "Financial time-series analysis: A brief overview," Papers 0704.1738, arXiv.org.
    7. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    8. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871, October.
    9. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: I. Empirical facts," Post-Print hal-00621058, HAL.
    10. Hirdesh K. Pharasi & Kiran Sharma & Rakesh Chatterjee & Anirban Chakraborti & Francois Leyvraz & Thomas H. Seligman, 2018. "Identifying long-term precursors of financial market crashes using correlation patterns," Papers 1809.00885, arXiv.org, revised Sep 2018.
    11. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    12. Thomas Mikosch & Cătălin Stărică, 2004. "Nonstationarities in Financial Time Series, the Long-Range Dependence, and the IGARCH Effects," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 378-390, February.
    13. Rudi Schafer & Nils Fredrik Nilsson & Thomas Guhr, 2010. "Power mapping with dynamical adjustment for improved portfolio optimization," Quantitative Finance, Taylor & Francis Journals, vol. 10(1), pages 107-119.
    14. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pharasi, Hirdesh K. & Seligman, Eduard & Sadhukhan, Suchetana & Majari, Parisa & Seligman, Thomas H., 2024. "Dynamics of market states and risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    2. Anirban Chakraborti & Hrishidev & Kiran Sharma & Hirdesh K. Pharasi, 2019. "Phase separation and scaling in correlation structures of financial markets," Papers 1910.06242, arXiv.org, revised Jul 2020.
    3. Nikolaos Th. Chatzarakis, 2021. "Revisiting the role and consequences of Econophysics from a Marxian perspective," Bulletin of Political Economy, Bulletin of Political Economy, vol. 15(1), pages 45-68, June.
    4. Heckens, Anton J. & Guhr, Thomas, 2022. "New collectivity measures for financial covariances and correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    5. Kiran Sharma & Subhradeep Das & Anirban Chakraborti, 2017. "Global Income Inequality and Savings: A Data Science Perspective," Papers 1801.00253, arXiv.org, revised Aug 2018.
    6. Ivan Jericevich & Murray McKechnie & Tim Gebbie, 2021. "Calibrating an adaptive Farmer-Joshi agent-based model for financial markets," Papers 2104.09863, arXiv.org.
    7. Ban Zheng & François Roueff & Frédéric Abergel, 2014. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Post-Print hal-00777941, HAL.
    8. Ivan Jericevich & Patrick Chang & Tim Gebbie, 2021. "Simulation and estimation of a point-process market-model with a matching engine," Papers 2105.02211, arXiv.org, revised Aug 2021.
    9. Seemann, Lars & Hua, Jia-Chen & McCauley, Joseph L. & Gunaratne, Gemunu H., 2012. "Ensemble vs. time averages in financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6024-6032.
    10. A. O. Glekin & A. Lykov & K. L. Vaninsky, 2014. "On Simulation of Various Effects in Consolidated Order Book," Papers 1402.4150, arXiv.org.
    11. Hong Guo & Jianwu Lin & Fanlin Huang, 2023. "Market Making with Deep Reinforcement Learning from Limit Order Books," Papers 2305.15821, arXiv.org.
    12. Fei Cao & Sebastien Motsch, 2021. "Derivation of wealth distributions from biased exchange of money," Papers 2105.07341, arXiv.org.
    13. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2020. "A path integral approach to business cycle models with large number of agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(4), pages 899-942, October.
    14. Moura, N.J. & Ribeiro, Marcelo B., 2013. "Testing the Goodwin growth-cycle macroeconomic dynamics in Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2088-2103.
    15. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2019. "A Statistical Field Approach to Capital Accumulation," Working Papers hal-02280634, HAL.
    16. Stein, Julian Alexander Cornelius & Braun, Dieter, 2019. "Stability of a time-homogeneous system of money and antimoney in an agent-based random economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 232-249.
    17. Hua, Jia-Chen & Chen, Lijian & Falcon, Liberty & McCauley, Joseph L. & Gunaratne, Gemunu H., 2015. "Variable diffusion in stock market fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 221-233.
    18. Upadhyay, Shashankaditya & Banerjee, Anirban & Panigrahi, Prasanta K., 2020. "Causal evolution of global crisis in financial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    19. Poitras, Geoffrey, 2018. "The pre-history of econophysics and the history of economics: Boltzmann versus the marginalists," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 89-98.
    20. repec:hal:wpaper:hal-00777941 is not listed on IDEAS
    21. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2017. "A Path Integral Approach to Interacting Economic Systems with Multiple Heterogeneous Agents," Working Papers hal-01549586, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1809.07100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.