IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1503.01584.html
   My bibliography  Save this paper

Constructing Analytically Tractable Ensembles of Non-Stationary Covariances with an Application to Financial Data

Author

Listed:
  • Frederik Meudt
  • Martin Theissen
  • Rudi Schafer
  • Thomas Guhr

Abstract

In complex systems, crucial parameters are often subject to unpredictable changes in time. Climate, biological evolution and networks provide numerous examples for such non-stationarities. In many cases, improved statistical models are urgently called for. In a general setting, we study systems of correlated quantities to which we refer as amplitudes. We are interested in the case of non-stationarity, i.e., seemingly random covariances. We present a general method to derive the distribution of the covariances from the distribution of the amplitudes. To ensure analytical tractability, we construct a properly deformed Wishart ensemble of random matrices. We apply our method to financial returns where the wealth of data allows us to carry out statistically significant tests. The ensemble that we find is characterized by an algebraic distribution which improves the understanding of large events.

Suggested Citation

  • Frederik Meudt & Martin Theissen & Rudi Schafer & Thomas Guhr, 2015. "Constructing Analytically Tractable Ensembles of Non-Stationary Covariances with an Application to Financial Data," Papers 1503.01584, arXiv.org, revised Jul 2015.
  • Handle: RePEc:arx:papers:1503.01584
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1503.01584
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreas Muhlbacher & Thomas Guhr, 2018. "Credit Risk Meets Random Matrices: Coping with Non-Stationary Asset Correlations," Papers 1803.00261, arXiv.org.
    2. Thomas Guhr & Andreas Schell, 2020. "Exact Multivariate Amplitude Distributions for Non-Stationary Gaussian or Algebraic Fluctuations of Covariances or Correlations," Papers 2011.07570, arXiv.org.
    3. Hirdesh K. Pharasi & Suchetana Sadhukhan & Parisa Majari & Anirban Chakraborti & Thomas H. Seligman, 2021. "Dynamics of the market states in the space of correlation matrices with applications to financial markets," Papers 2107.05663, arXiv.org.
    4. Pharasi, Hirdesh K. & Seligman, Eduard & Sadhukhan, Suchetana & Majari, Parisa & Seligman, Thomas H., 2024. "Dynamics of market states and risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    5. Andreas Mühlbacher & Thomas Guhr, 2018. "Credit Risk Meets Random Matrices: Coping with Non-Stationary Asset Correlations," Risks, MDPI, vol. 6(2), pages 1-25, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1503.01584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.