IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2009.12335.html
   My bibliography  Save this paper

Network geometry and market instability

Author

Listed:
  • Areejit Samal
  • Hirdesh K. Pharasi
  • Sarath Jyotsna Ramaia
  • Harish Kannan
  • Emil Saucan
  • Jurgen Jost
  • Anirban Chakraborti

Abstract

The complexity of financial markets arise from the strategic interactions among agents trading stocks, which manifest in the form of vibrant correlation patterns among stock prices. Over the past few decades, complex financial markets have often been represented as networks whose interacting pairs of nodes are stocks, connected by edges that signify the correlation strengths. However, we often have interactions that occur in groups of three or more nodes, and these cannot be described simply by pairwise interactions but we also need to take the relations between these interactions into account. Only recently, researchers have started devoting attention to the higher-order architecture of complex financial systems, that can significantly enhance our ability to estimate systemic risk as well as measure the robustness of financial systems in terms of market efficiency. Geometry-inspired network measures, such as the Ollivier-Ricci curvature and Forman-Ricci curvature, can be used to capture the network fragility and continuously monitor financial dynamics. Here, we explore the utility of such discrete Ricci curvatures in characterizing the structure of financial systems, and further, evaluate them as generic indicators of the market instability. For this purpose, we examine the daily returns from a set of stocks comprising the USA S&P-500 and the Japanese Nikkei-225 over a 32-year period, and monitor the changes in the edge-centric network curvatures. We find that the different geometric measures capture well the system-level features of the market and hence we can distinguish between the normal or `business-as-usual' periods and all the major market crashes. This can be very useful in strategic designing of financial systems and regulating the markets in order to tackle financial instabilities.

Suggested Citation

  • Areejit Samal & Hirdesh K. Pharasi & Sarath Jyotsna Ramaia & Harish Kannan & Emil Saucan & Jurgen Jost & Anirban Chakraborti, 2020. "Network geometry and market instability," Papers 2009.12335, arXiv.org, revised Jan 2021.
  • Handle: RePEc:arx:papers:2009.12335
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2009.12335
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehmet Ali Balcı & Larissa M. Batrancea & Ömer Akgüller, 2022. "Network-Induced Soft Sets and Stock Market Applications," Mathematics, MDPI, vol. 10(21), pages 1-24, October.
    2. Deborah Sulem & Henry Kenlay & Mihai Cucuringu & Xiaowen Dong, 2022. "Graph similarity learning for change-point detection in dynamic networks," Papers 2203.15470, arXiv.org.
    3. Pharasi, Hirdesh K. & Seligman, Eduard & Sadhukhan, Suchetana & Majari, Parisa & Seligman, Thomas H., 2024. "Dynamics of market states and risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    4. Kulkarni, Saumitra & Pharasi, Hirdesh K. & Vijayaraghavan, Sudharsan & Kumar, Sunil & Chakraborti, Anirban & Samal, Areejit, 2024. "Investigation of Indian stock markets using topological data analysis and geometry-inspired network measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    5. Dragos Gorduza & Xiaowen Dong & Stefan Zohren, 2022. "Understanding stock market instability via graph auto-encoders," Papers 2212.04974, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2009.12335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.