IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1503.09004.html
   My bibliography  Save this paper

Dependence structure of market states

Author

Listed:
  • Desislava Chetalova
  • Marcel Wollschlager
  • Rudi Schafer

Abstract

We study the dependence structure of market states by estimating empirical pairwise copulas of daily stock returns. We consider both original returns, which exhibit time-varying trends and volatilities, as well as locally normalized ones, where the non-stationarity has been removed. The empirical pairwise copula for each state is compared with a bivariate K-copula. This copula arises from a recently introduced random matrix model, in which non-stationary correlations between returns are modeled by an ensemble of random matrices. The comparison reveals overall good agreement between empirical and analytical copulas, especially for locally normalized returns. Still, there are some deviations in the tails. Furthermore, we find an asymmetry in the dependence structure of market states. The empirical pairwise copulas exhibit a stronger lower tail dependence, particularly in times of crisis.

Suggested Citation

  • Desislava Chetalova & Marcel Wollschlager & Rudi Schafer, 2015. "Dependence structure of market states," Papers 1503.09004, arXiv.org, revised Jul 2015.
  • Handle: RePEc:arx:papers:1503.09004
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1503.09004
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marius Hofert & Matthias Scherer, 2011. "CDO pricing with nested Archimedean copulas," Quantitative Finance, Taylor & Francis Journals, vol. 11(5), pages 775-787.
    2. Michael C. Munnix & Takashi Shimada & Rudi Schafer & Francois Leyvraz Thomas H. Seligman & Thomas Guhr & H. E. Stanley, 2012. "Identifying States of a Financial Market," Papers 1202.1623, arXiv.org.
    3. Andrew J. Patton, 2004. "On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 130-168.
    4. Schäfer, Rudi & Guhr, Thomas, 2010. "Local normalization: Uncovering correlations in non-stationary financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3856-3865.
    5. repec:bla:jfinan:v:44:y:1989:i:5:p:1115-53 is not listed on IDEAS
    6. Manuel Ammann & Stephan Suss, 2009. "Asymmetric dependence patterns in financial time series," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 703-719.
    7. Rosenberg, Joshua V. & Schuermann, Til, 2006. "A general approach to integrated risk management with skewed, fat-tailed risks," Journal of Financial Economics, Elsevier, vol. 79(3), pages 569-614, March.
    8. Isabelle Huault & V. Perret & S. Charreire-Petit, 2007. "Management," Post-Print halshs-00337676, HAL.
    9. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    10. David A. Hennessy & Harvey E. Lapan, 2002. "The Use of Archimedean Copulas to Model Portfolio Allocations," Mathematical Finance, Wiley Blackwell, vol. 12(2), pages 143-154, April.
    11. Boubaker, Heni & Sghaier, Nadia, 2013. "Portfolio optimization in the presence of dependent financial returns with long memory: A copula based approach," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 361-377.
    12. Daniel J. Fenn & Mason A. Porter & Stacy Williams & Mark McDonald & Neil F. Johnson & Nick S. Jones, 2010. "Temporal Evolution of Financial Market Correlations," Papers 1011.3225, arXiv.org, revised May 2011.
    13. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    14. Kole, Erik & Koedijk, Kees & Verbeek, Marno, 2007. "Selecting copulas for risk management," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2405-2423, August.
    15. van den Goorbergh, Rob W.J. & Genest, Christian & Werker, Bas J.M., 2005. "Bivariate option pricing using dynamic copula models," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 101-114, August.
    16. Joshua V. Rosenberg, 2003. "Nonparametric pricing of multivariate contingent claims," Staff Reports 162, Federal Reserve Bank of New York.
    17. Thilo A. Schmitt & Desislava Chetalova & Rudi Schafer & Thomas Guhr, 2013. "Non-Stationarity in Financial Time Series and Generic Features," Papers 1304.5130, arXiv.org, revised May 2013.
    18. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    19. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    20. repec:bla:ecnote:v:33:y:2004:i:3:p:325-357 is not listed on IDEAS
    21. Christian Genest & Michel Gendron & Michaël Bourdeau-Brien, 2009. "The Advent of Copulas in Finance," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 609-618.
    22. Sun Wei & Rachev Svetlozar & Stoyanov Stoyan V. & Fabozzi Frank J., 2008. "Multivariate Skewed Student's t Copula in the Analysis of Nonlinear and Asymmetric Dependence in the German Equity Market," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(2), pages 1-37, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heckens, Anton J. & Guhr, Thomas, 2022. "New collectivity measures for financial covariances and correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    2. Pharasi, Hirdesh K. & Seligman, Eduard & Sadhukhan, Suchetana & Majari, Parisa & Seligman, Thomas H., 2024. "Dynamics of market states and risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcel Wollschlager & Rudi Schafer, 2015. "Impact of non-stationarity on estimating and modeling empirical copulas of daily stock returns," Papers 1506.08054, arXiv.org.
    2. Desislava Chetalova & Rudi Schafer & Thomas Guhr, 2014. "Zooming into market states," Papers 1406.5386, arXiv.org.
    3. Grundke, Peter & Polle, Simone, 2012. "Crisis and risk dependencies," European Journal of Operational Research, Elsevier, vol. 223(2), pages 518-528.
    4. Zhichao Zhang & Li Ding & Fan Zhang & Zhuang Zhang, 2015. "Optimal Currency Composition for China's Foreign Reserves: A Copula Approach," The World Economy, Wiley Blackwell, vol. 38(12), pages 1947-1965, December.
    5. Bedendo, Mascia & Campolongo, Francesca & Joossens, Elisabeth & Saita, Francesco, 2010. "Pricing multiasset equity options: How relevant is the dependence function?," Journal of Banking & Finance, Elsevier, vol. 34(4), pages 788-801, April.
    6. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    7. Andrew J. Patton, 2006. "Estimation of multivariate models for time series of possibly different lengths," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 147-173, March.
    8. David E. Allen & Abhay K. Singh & Robert J. Powell & Michael McAleer & James Taylor & Lyn Thomas, 2013. "Return-Volatility Relationship: Insights from Linear and Non-Linear Quantile Regression," Tinbergen Institute Discussion Papers 13-020/III, Tinbergen Institute.
    9. Agbeyegbe, Terence D., 2015. "An inverted U-shaped crude oil price return-implied volatility relationship," Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.
    10. Alcock, Jamie & Sinagl, Petra, 2022. "International determinants of asymmetric dependence in investment returns," Journal of International Money and Finance, Elsevier, vol. 122(C).
    11. Jamie Alcock & Petra Andrlikova, 2018. "Asymmetric Dependence in Real Estate Investment Trusts: An Asset-Pricing Analysis," The Journal of Real Estate Finance and Economics, Springer, vol. 56(2), pages 183-216, February.
    12. David E Allen & Abhay K Singh & Robert J Powell & Michael McAleer & James Taylor & Lyn Thomas, 2012. "The Volatility-Return Relationship:Insights from Linear and Non-Linear Quantile Regressions," KIER Working Papers 831, Kyoto University, Institute of Economic Research.
    13. Paulo Horta & Carlos Mendes & Isabel Vieira, 2010. "Contagion effects of the subprime crisis in the European NYSE Euronext markets," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 9(2), pages 115-140, August.
    14. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    15. Chollete, Lorán & de la Peña, Victor & Lu, Ching-Chih, 2011. "International diversification: A copula approach," Journal of Banking & Finance, Elsevier, vol. 35(2), pages 403-417, February.
    16. Chollete, Loran & Ning, Cathy, 2010. "Asymmetric Dependence in US Financial Risk Factors?," UiS Working Papers in Economics and Finance 2011/2, University of Stavanger.
    17. Tong, Bin & Wu, Chongfeng & Zhou, Chunyang, 2013. "Modeling the co-movements between crude oil and refined petroleum markets," Energy Economics, Elsevier, vol. 40(C), pages 882-897.
    18. Chun-Pin Hsu & Chin-Wen Huang & Wan-Jiun Chiou, 2012. "Effectiveness of copula-extreme value theory in estimating value-at-risk: empirical evidence from Asian emerging markets," Review of Quantitative Finance and Accounting, Springer, vol. 39(4), pages 447-468, November.
    19. Baur, Dirk G., 2013. "The structure and degree of dependence: A quantile regression approach," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 786-798.
    20. Zhu, Wenjun & Wang, Chou-Wen & Tan, Ken Seng, 2016. "Structure and estimation of Lévy subordinated hierarchical Archimedean copulas (LSHAC): Theory and empirical tests," Journal of Banking & Finance, Elsevier, vol. 69(C), pages 20-36.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1503.09004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.