IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1810.07178.html
   My bibliography  Save this paper

A Path Integral Approach to Business Cycle Models with Large Number of Agents

Author

Listed:
  • Aileen Lotz
  • Pierre Gosselin
  • Marc Wambst

    (IRMA)

Abstract

This paper presents an analytical treatment of economic systems with an arbitrary number of agents that keeps track of the systems' interactions and agents' complexity. This formalism does not seek to aggregate agents. It rather replaces the standard optimization approach by a probabilistic description of both the entire system and agents'behaviors. This is done in two distinct steps. A first step considers an interacting system involving an arbitrary number of agents, where each agent's utility function is subject to unpredictable shocks. In such a setting, individual optimization problems need not be resolved. Each agent is described by a time-dependent probability distribution centered around his utility optimum. The entire system of agents is thus defined by a composite probability depending on time, agents' interactions and forward-looking behaviors. This dynamic system is described by a path integral formalism in an abstract space-the space of the agents' actions-and is very similar to a statistical physics or quantum mechanics system. We show that this description, applied to the space of agents'actions, reduces to the usual optimization results in simple cases. Compared to a standard optimization, such a description markedly eases the treatment of systems with small number of agents. It becomes however useless for a large number of agents. In a second step therefore, we show that for a large number of agents, the previous description is equivalent to a more compact description in terms of field theory. This yields an analytical though approximate treatment of the system. This field theory does not model the aggregation of a microeconomic system in the usual sense. It rather describes an environment of a large number of interacting agents. From this description, various phases or equilibria may be retrieved, along with individual agents' behaviors and their interactions with the environment. For illustrative purposes, this paper studies a Business Cycle model with a large number of agents.

Suggested Citation

  • Aileen Lotz & Pierre Gosselin & Marc Wambst, 2018. "A Path Integral Approach to Business Cycle Models with Large Number of Agents," Papers 1810.07178, arXiv.org.
  • Handle: RePEc:arx:papers:1810.07178
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1810.07178
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. A. Chakraborti & I. Muni-Toke & M. Patriarca & F. Abergel, 2011. "Econophysics Review : II. Agent-based models," Post-Print hal-03332946, HAL.
    2. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    3. Maurice Obstfeld & Kenneth S. Rogoff, 1996. "Foundations of International Macroeconomics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262150476, December.
    4. Lux, Thomas, 2008. "Applications of statistical physics in finance and economics," Kiel Working Papers 1425, Kiel Institute for the World Economy (IfW Kiel).
    5. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    6. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2015. "From Rationality to Irrationality : Dynamic Interacting Structures," Working Papers hal-01122078, HAL.
    7. Lotz, Aïleen, 2011. "An Economic Approach to the Self : the Dual Agent," MPRA Paper 50771, University Library of Munich, Germany.
    8. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: I. Empirical facts," Post-Print hal-00621058, HAL.
    9. Lucas, Robert Jr, 1976. "Econometric policy evaluation: A critique," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 1(1), pages 19-46, January.
    10. Mauro Napoletano & Jean-Luc Gaffard & Zakaria Babutsidze, 2012. "Agent Based Models," SciencePo Working papers Main hal-03461262, HAL.
    11. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    12. repec:hal:spmain:info:hdl:2441/53r60a8s3kup1vc9l564igg8g is not listed on IDEAS
    13. repec:hal:wpspec:info:hdl:2441/53r60a8s3kup1vc9l564igg8g is not listed on IDEAS
    14. Gosselin, Pierre & Lotz, Aileen & Wambst, Marc, 2013. "On apparent irrational behaviors : interacting structures and the mind," MPRA Paper 44421, University Library of Munich, Germany.
    15. Brunner, Karl & Meltzer, Allan H., 1976. "The Phillips curve," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 1(1), pages 1-18, January.
    16. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2017. "A Path Integral Approach to Interacting Economic Systems with Multiple Heterogeneous Agents," Working Papers hal-01549586, HAL.
    17. Lotz, Aileen & Gosselin, Pierre, 2012. "A dynamic model of interactions between conscious and unconscious," MPRA Paper 36697, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2021. "A statistical field approach to capital accumulation," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(4), pages 817-908, October.
    2. Lotz, Aïleen, 2011. "An Economic Approach to the Self : the Dual Agent," MPRA Paper 30043, University Library of Munich, Germany.
    3. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2019. "A Statistical Field Approach to Capital Accumulation," Working Papers hal-02280634, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2018. "A Path Integral Approach to Business Cycle Models with Large Number of Agents," Working Papers hal-01893556, HAL.
    2. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2017. "A Path Integral Approach to Interacting Economic Systems with Multiple Heterogeneous Agents," Working Papers hal-01549586, HAL.
    3. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2021. "A statistical field approach to capital accumulation," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(4), pages 817-908, October.
    4. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2019. "A Statistical Field Approach to Capital Accumulation," Working Papers hal-02280634, HAL.
    5. Kiran Sharma & Subhradeep Das & Anirban Chakraborti, 2017. "Global Income Inequality and Savings: A Data Science Perspective," Papers 1801.00253, arXiv.org, revised Aug 2018.
    6. Ban Zheng & François Roueff & Frédéric Abergel, 2014. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Post-Print hal-00777941, HAL.
    7. Hong Guo & Jianwu Lin & Fanlin Huang, 2023. "Market Making with Deep Reinforcement Learning from Limit Order Books," Papers 2305.15821, arXiv.org.
    8. Fei Cao & Sebastien Motsch, 2021. "Derivation of wealth distributions from biased exchange of money," Papers 2105.07341, arXiv.org.
    9. repec:hal:wpaper:hal-00777941 is not listed on IDEAS
    10. Ivan Jericevich & Patrick Chang & Tim Gebbie, 2021. "Simulation and estimation of an agent-based market-model with a matching engine," Papers 2108.07806, arXiv.org, revised Aug 2021.
    11. Inoua, Sabiou M. & Smith, Vernon L., 2023. "A classical model of speculative asset price dynamics," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    12. Nikolaos Th. Chatzarakis, 2021. "Revisiting the role and consequences of Econophysics from a Marxian perspective," Bulletin of Political Economy, Bulletin of Political Economy, vol. 15(1), pages 45-68, June.
    13. Ban Zheng & Franc{c}ois Roueff & Fr'ed'eric Abergel, 2013. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Papers 1301.5007, arXiv.org, revised Feb 2014.
    14. Martin Šmíd, 2016. "Estimation of zero-intelligence models by L1 data," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1423-1444, September.
    15. Salvador Pueyo, 2013. "Is it a power law distribution? The case of economic contractions," Papers 1310.2567, arXiv.org.
    16. Ignacio Ormazábal & F. A. Borotto & H. F. Astudillo, 2017. "Influence of Money Distribution on Civil Violence Model," Complexity, Hindawi, vol. 2017, pages 1-15, November.
    17. Anirban Chakraborti & Hrishidev & Kiran Sharma & Hirdesh K. Pharasi, 2019. "Phase separation and scaling in correlation structures of financial markets," Papers 1910.06242, arXiv.org, revised Jul 2020.
    18. Salvador Pueyo, 2014. "Ecological Econophysics for Degrowth," Sustainability, MDPI, vol. 6(6), pages 1-53, May.
    19. Christoph J. Borner & Ingo Hoffmann & John H. Stiebel, 2024. "A closer look at the chemical potential of an ideal agent system," Papers 2401.09233, arXiv.org.
    20. Ivan Jericevich & Murray McKechnie & Tim Gebbie, 2021. "Calibrating an adaptive Farmer-Joshi agent-based model for financial markets," Papers 2104.09863, arXiv.org.
    21. Ivan Jericevich & Patrick Chang & Tim Gebbie, 2021. "Simulation and estimation of a point-process market-model with a matching engine," Papers 2105.02211, arXiv.org, revised Aug 2021.

    More about this item

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • E00 - Macroeconomics and Monetary Economics - - General - - - General
    • E1 - Macroeconomics and Monetary Economics - - General Aggregative Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1810.07178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.