IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1310.2567.html
   My bibliography  Save this paper

Is it a power law distribution? The case of economic contractions

Author

Listed:
  • Salvador Pueyo

Abstract

One of the first steps to understand and forecast economic downturns is identifying their frequency distribution, but it remains uncertain. This problem is common in phenomena displaying power-law-like distributions. Power laws play a central role in complex systems theory; therefore, the current limitations in the identification of this distribution in empirical data are a major obstacle to pursue the insights that the complexity approach offers in many fields. This paper addresses this issue by introducing a reliable methodology with a solid theoretical foundation, the Taylor Series-Based Power Law Range Identification Method. When applied to time series from 39 countries, this method reveals a well-defined power law in the relative per capita GDP contractions that span from 5.53% to 50%, comprising 263 events. However, this observation does not suffice to attribute recessions to some specific mechanism, such as self-organized criticality. The paper highlights a set of points requiring more study so as to discriminate among models compatible with the power law, as needed to develop sound tools for the management of recessions.

Suggested Citation

  • Salvador Pueyo, 2013. "Is it a power law distribution? The case of economic contractions," Papers 1310.2567, arXiv.org.
  • Handle: RePEc:arx:papers:1310.2567
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1310.2567
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert J. Barro & Tao Jin, 2011. "On the Size Distribution of Macroeconomic Disasters," Econometrica, Econometric Society, vol. 79(5), pages 1567-1589, September.
    2. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    3. Xavier Gabaix, 2009. "Power Laws in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 255-294, May.
    4. Xavier Gabaix, 2011. "The Granular Origins of Aggregate Fluctuations," Econometrica, Econometric Society, vol. 79(3), pages 733-772, May.
    5. A. Chakraborti & I. Muni-Toke & M. Patriarca & F. Abergel, 2011. "Econophysics Review : II. Agent-based models," Post-Print hal-03332946, HAL.
    6. Y. Fujiwara & H. Aoyama, 2010. "Large-scale structure of a nation-wide production network," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 77(4), pages 565-580, October.
    7. Youngki Lee & Luis A. N. Amaral & David Canning & Martin Meyer & H. Eugene Stanley, 1998. "Universal features in the growth dynamics of complex organizations," Papers cond-mat/9804100, arXiv.org.
    8. Ormerod, Paul, 2004. "Information cascades and the distribution of economic recessions in capitalist economies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 556-568.
    9. Ormerod, Paul & Mounfield, Craig, 2001. "Power law distribution of the duration and magnitude of recessions in capitalist economies: breakdown of scaling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 293(3), pages 573-582.
    10. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    11. Battiston, Stefano & Delli Gatti, Domenico & Gallegati, Mauro & Greenwald, Bruce & Stiglitz, Joseph E., 2007. "Credit chains and bankruptcy propagation in production networks," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 2061-2084, June.
    12. Paul Ormerod, 2004. "Information cascades and the distribution of economic recessions in the United States," Papers cond-mat/0402648, arXiv.org.
    13. Robert J. Barro & José F. Ursúa, 2012. "Rare Macroeconomic Disasters," Annual Review of Economics, Annual Reviews, vol. 4(1), pages 83-109, July.
    14. Domenico Delli Gatti & Mauro Gallegati & Bruce Greenwald & Alberto Russo & Joseph Stiglitz, 2009. "Business fluctuations and bankruptcy avalanches in an evolving network economy," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 4(2), pages 195-212, November.
    15. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    16. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: I. Empirical facts," Post-Print hal-00621058, HAL.
    17. Canning, D. & Amaral, L. A. N. & Lee, Y. & Meyer, M. & Stanley, H. E., 1998. "Scaling the volatility of GDP growth rates," Economics Letters, Elsevier, vol. 60(3), pages 335-341, September.
    18. Victor M. Yakovenko & J. Barkley Rosser, 2009. "Colloquium: Statistical mechanics of money, wealth, and income," Papers 0905.1518, arXiv.org, revised Dec 2009.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salvador Pueyo, 2014. "Ecological Econophysics for Degrowth," Sustainability, MDPI, vol. 6(6), pages 1-53, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salvador Pueyo, 2014. "Ecological Econophysics for Degrowth," Sustainability, MDPI, vol. 6(6), pages 1-53, May.
    2. Ignacio Ormazábal & F. A. Borotto & H. F. Astudillo, 2017. "Influence of Money Distribution on Civil Violence Model," Complexity, Hindawi, vol. 2017, pages 1-15, November.
    3. Kiran Sharma & Subhradeep Das & Anirban Chakraborti, 2017. "Global Income Inequality and Savings: A Data Science Perspective," Papers 1801.00253, arXiv.org, revised Aug 2018.
    4. Ban Zheng & François Roueff & Frédéric Abergel, 2014. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Post-Print hal-00777941, HAL.
    5. Hong Guo & Jianwu Lin & Fanlin Huang, 2023. "Market Making with Deep Reinforcement Learning from Limit Order Books," Papers 2305.15821, arXiv.org.
    6. Fei Cao & Sebastien Motsch, 2021. "Derivation of wealth distributions from biased exchange of money," Papers 2105.07341, arXiv.org.
    7. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2020. "A path integral approach to business cycle models with large number of agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(4), pages 899-942, October.
    8. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2019. "A Statistical Field Approach to Capital Accumulation," Working Papers hal-02280634, HAL.
    9. Stein, Julian Alexander Cornelius & Braun, Dieter, 2019. "Stability of a time-homogeneous system of money and antimoney in an agent-based random economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 232-249.
    10. Hua, Jia-Chen & Chen, Lijian & Falcon, Liberty & McCauley, Joseph L. & Gunaratne, Gemunu H., 2015. "Variable diffusion in stock market fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 221-233.
    11. repec:hal:wpaper:hal-00777941 is not listed on IDEAS
    12. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2017. "A Path Integral Approach to Interacting Economic Systems with Multiple Heterogeneous Agents," Working Papers hal-01549586, HAL.
    13. Ivan Jericevich & Patrick Chang & Tim Gebbie, 2021. "Simulation and estimation of an agent-based market-model with a matching engine," Papers 2108.07806, arXiv.org, revised Aug 2021.
    14. Inoua, Sabiou M. & Smith, Vernon L., 2023. "A classical model of speculative asset price dynamics," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    15. Nikolaos Th. Chatzarakis, 2021. "Revisiting the role and consequences of Econophysics from a Marxian perspective," Bulletin of Political Economy, Bulletin of Political Economy, vol. 15(1), pages 45-68, June.
    16. Ban Zheng & Franc{c}ois Roueff & Fr'ed'eric Abergel, 2013. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Papers 1301.5007, arXiv.org, revised Feb 2014.
    17. Martin Šmíd, 2016. "Estimation of zero-intelligence models by L1 data," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1423-1444, September.
    18. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2021. "A statistical field approach to capital accumulation," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(4), pages 817-908, October.
    19. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2018. "A Path Integral Approach to Business Cycle Models with Large Number of Agents," Working Papers hal-01893556, HAL.
    20. Aleksejus Kononovicius & Vygintas Gontis, 2014. "Herding interactions as an opportunity to prevent extreme events in financial markets," Papers 1409.8024, arXiv.org, revised May 2015.
    21. Anirban Chakraborti & Hrishidev & Kiran Sharma & Hirdesh K. Pharasi, 2019. "Phase separation and scaling in correlation structures of financial markets," Papers 1910.06242, arXiv.org, revised Jul 2020.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1310.2567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.