IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v607y2022ics0378437122007592.html
   My bibliography  Save this article

Enhanced by mobility? Effect of users’ mobility on information diffusion in coupled online social networks

Author

Listed:
  • Wang, Yanan
  • Wang, Jun
  • Zhang, Ruilin
  • Liu, Ou

Abstract

Online social networks have gradually become crucial tools for users to exchange information. Two characteristics of online social networks should be underlined: first, individuals can freely leave or stay; second, information diffusion is more common on coupled online social platforms. However, very few research combines the above two aspects when studying the information diffusion in online social networks. Therefore, we establish an in-out-unacquired2-acquired 2-rejected2 (IO-S2P2R2) information diffusion model which investigates the time evolution of three types of users considering users’ mobility in coupled online social networks using mean-field theory. We analyze the theoretical threshold of information diffusion via linear analysis and find that the information diffusion threshold is related to the maximum eigenvalue of the super adjacency matrix. Moreover, by comparing the mean-field method with the Monte Carlo method, the consistency of the simulation results is obtained, which verifies the scientificity of our model. The results demonstrate the consistency of linear analysis and simulation experiments. Besides, based on the existing data sets, information diffusion rates and users’ mobility rates are positively correlated with the range of information diffusion, while information decline rates are negatively correlated with the range of information diffusion through the sensitivity analysis of parameters.

Suggested Citation

  • Wang, Yanan & Wang, Jun & Zhang, Ruilin & Liu, Ou, 2022. "Enhanced by mobility? Effect of users’ mobility on information diffusion in coupled online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
  • Handle: RePEc:eee:phsmap:v:607:y:2022:i:c:s0378437122007592
    DOI: 10.1016/j.physa.2022.128201
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122007592
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128201?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Haiying & Wang, Jun & Small, Michael & Moore, Jack Murdoch, 2019. "Review mechanism promotes knowledge transmission in complex networks," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 113-125.
    2. Feng, Shanshan & Jin, Zhen, 2019. "Infectious diseases spreading on a metapopulation network coupled with its second-neighbor network," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 87-97.
    3. Zhan, Xiu-Xiu & Liu, Chuang & Zhou, Ge & Zhang, Zi-Ke & Sun, Gui-Quan & Zhu, Jonathan J.H. & Jin, Zhen, 2018. "Coupling dynamics of epidemic spreading and information diffusion on complex networks," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 437-448.
    4. Zhao, Laijun & Wang, Jiajia & Chen, Yucheng & Wang, Qin & Cheng, Jingjing & Cui, Hongxin, 2012. "SIHR rumor spreading model in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2444-2453.
    5. Hu, Junlang & Zhu, Linhe, 2021. "Turing pattern analysis of a reaction-diffusion rumor propagation system with time delay in both network and non-network environments," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    6. Chen, Xuan-Hao & Cai, Shi-Min & Wang, Wei & Tang, Ming & Stanley, H. Eugene, 2018. "Predicting epidemic threshold of correlated networks: A comparison of methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 500-511.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Hongmiao & Wang, Yumie & Yan, Xin & Jin, Zhen, 2022. "Research on knowledge dissemination model in the multiplex network with enterprise social media and offline transmission routes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    2. Chen, Xiao-Long & Wang, Rui-Jie & Yang, Chun & Cai, Shi-Min, 2019. "Hybrid resource allocation and its impact on the dynamics of disease spreading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 156-165.
    3. Wang, Zhixiao & Rui, Xiaobin & Yuan, Guan & Cui, Jingjing & Hadzibeganovic, Tarik, 2021. "Endemic information-contagion outbreaks in complex networks with potential spreaders based recurrent-state transmission dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    4. Cai, Shi-Min & Chen, Xuan-Hao & Ye, Xi-Jun & Tang, Ming, 2019. "Precisely identifying the epidemic thresholds in real networks via asynchronous updating," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 377-388.
    5. Li, Dandan & Ma, Jing, 2017. "How the government’s punishment and individual’s sensitivity affect the rumor spreading in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 284-292.
    6. Xue Yang & Zhiliang Zhu & Hai Yu & Yuli Zhao & Li Guo, 2019. "Evolutionary Game Dynamics of the Competitive Information Propagation on Social Networks," Complexity, Hindawi, vol. 2019, pages 1-11, December.
    7. Hosni, Adil Imad Eddine & Li, Kan & Ahmad, Sadique, 2020. "Analysis of the impact of online social networks addiction on the propagation of rumors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    8. Tian, Yang & Tian, Hui & Cui, Yajuan & Zhu, Xuzhen & Cui, Qimei, 2023. "Influence of behavioral adoption preference based on heterogeneous population on multiple weighted networks," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    9. Huang, He & Chen, Yahong & Ma, Yefeng, 2021. "Modeling the competitive diffusions of rumor and knowledge and the impacts on epidemic spreading," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    10. Liu, Weiwei & Song, Yifan & Bi, Kexin, 2021. "Exploring the patent collaboration network of China's wind energy industry: A study based on patent data from CNIPA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    11. Yin, Fulian & Jiang, Xinyi & Qian, Xiqing & Xia, Xinyu & Pan, Yanyan & Wu, Jianhong, 2022. "Modeling and quantifying the influence of rumor and counter-rumor on information propagation dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    12. Zhu, Hongmiao & Jin, Zhen & Yan, Xin, 2023. "A dynamics model of coupling transmission for multiple different knowledge in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    13. Jia, Pingqi & Wang, Chao & Zhang, Gaoyu & Ma, Jianfeng, 2019. "A rumor spreading model based on two propagation channels in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 342-353.
    14. Wang, Haiying & Moore, Jack Murdoch & Wang, Jun & Small, Michael, 2021. "The distinct roles of initial transmission and retransmission in the persistence of knowledge in complex networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    15. Zan, Yongli & Wu, Jianliang & Li, Ping & Yu, Qinglin, 2014. "SICR rumor spreading model in complex networks: Counterattack and self-resistance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 159-170.
    16. Yuan, Guanghui & Han, Jingti & Zhou, Lei & Liang, Hejun & Zhang, Yicheng, 2019. "Supply and demand law under variable information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    17. Ouyang, Bo & Teng, Zhaosheng & Tang, Qiu, 2016. "Dynamics in local influence cascading models," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 182-186.
    18. Zhao, Laijun & Qiu, Xiaoyan & Wang, Xiaoli & Wang, Jiajia, 2013. "Rumor spreading model considering forgetting and remembering mechanisms in inhomogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 987-994.
    19. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    20. Xuzhen Zhu & Jinming Ma & Xin Su & Hui Tian & Wei Wang & Shimin Cai, 2019. "Information Spreading on Weighted Multiplex Social Network," Complexity, Hindawi, vol. 2019, pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:607:y:2022:i:c:s0378437122007592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.