IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v392y2021ics0096300320306834.html
   My bibliography  Save this article

The distinct roles of initial transmission and retransmission in the persistence of knowledge in complex networks

Author

Listed:
  • Wang, Haiying
  • Moore, Jack Murdoch
  • Wang, Jun
  • Small, Michael

Abstract

The rate of successfully acquiring knowledge depends on whether the individual has previously held that knowledge. In an earlier work, we represented this phenomenon by dividing the dynamical process of knowledge transmission into initial and retransmission stages, and applied mean field theory to identify an approximate condition for knowledge survival on homogeneous networks. In this work we move beyond our earlier, approximate results for homogeneous networks to provide rigorous results applicable to complex networks of arbitrary topology - including heterogeneous real world social networks. Specifically, we extend the Intertwined Continuous Markov Chain (ICMC) and Probabilistic Discrete Markov Chain (PDMC) models to address the Naive-Evangelical-Agnostic-Evangelical (VEAE) knowledge transmission process in complex networks. We identify the corresponding basic reproduction number R0, the quantity which dictates whether or not knowledge survives, and deduce simple upper and lower bounds for this measure. Moreover, simulations are performed to verify both the theoretical results, and the mutual consistency of the ICMC, PDMC and Monte Carlo methods. The simulations demonstrate that the initial transmission process directly affects the initial rate of change of the number of evangelical individuals, but has no effect on evangelical density in the steady state. However, the retransmission process has a direct effect on the steady state density of evangelical individuals.

Suggested Citation

  • Wang, Haiying & Moore, Jack Murdoch & Wang, Jun & Small, Michael, 2021. "The distinct roles of initial transmission and retransmission in the persistence of knowledge in complex networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
  • Handle: RePEc:eee:apmaco:v:392:y:2021:i:c:s0096300320306834
    DOI: 10.1016/j.amc.2020.125730
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320306834
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125730?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cowan, Robin & Jonard, Nicolas, 2004. "Network structure and the diffusion of knowledge," Journal of Economic Dynamics and Control, Elsevier, vol. 28(8), pages 1557-1575, June.
    2. Chaomei Chen & Diana Hicks, 2004. "Tracing knowledge diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 59(2), pages 199-211, February.
    3. Przemysław Różewski & Jarosław Jankowski, 2015. "Model of Multilayer Knowledge Diffusion for Competence Development in an Organization," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-20, October.
    4. Lin, Min & Li, Nan, 2010. "Scale-free network provides an optimal pattern for knowledge transfer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 473-480.
    5. Wang, Haiying & Wang, Jun & Small, Michael, 2018. "Knowledge transmission model with differing initial transmission and retransmission process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 478-488.
    6. Wang, Zhishuang & Guo, Quantong & Sun, Shiwen & Xia, Chengyi, 2019. "The impact of awareness diffusion on SIR-like epidemics in multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 134-147.
    7. Li, Jingjing & Zhang, Yumei & Man, Jiayu & Zhou, Yun & Wu, Xiaojun, 2017. "SISL and SIRL: Two knowledge dissemination models with leader nodes on cooperative learning networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 740-749.
    8. Argote, Linda & Ingram, Paul, 2000. "Knowledge Transfer: A Basis for Competitive Advantage in Firms," Organizational Behavior and Human Decision Processes, Elsevier, vol. 82(1), pages 150-169, May.
    9. Jean-Philippe Cointet & Camille Roth, 2007. "How Realistic Should Knowledge Diffusion Models Be?," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(3), pages 1-5.
    10. Kiss, Istvan Z. & Broom, Mark & Craze, Paul G. & Rafols, Ismael, 2010. "Can epidemic models describe the diffusion of topics across disciplines?," Journal of Informetrics, Elsevier, vol. 4(1), pages 74-82.
    11. Joel A. C. Baum & Paul Ingram, 1998. "Survival-Enhancing Learning in the Manhattan Hotel Industry, 1898--1980," Management Science, INFORMS, vol. 44(7), pages 996-1016, July.
    12. Wang, Haiying & Wang, Jun & Small, Michael & Moore, Jack Murdoch, 2019. "Review mechanism promotes knowledge transmission in complex networks," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 113-125.
    13. Bettencourt, Luís M.A. & Cintrón-Arias, Ariel & Kaiser, David I. & Castillo-Chávez, Carlos, 2006. "The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 513-536.
    14. Yuxian Liu & Ronald Rousseau, 2010. "Knowledge diffusion through publications and citations: A case study using ESI-fields as unit of diffusion," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(2), pages 340-351, February.
    15. Yuxian Liu & Ronald Rousseau, 2010. "Knowledge diffusion through publications and citations: A case study using ESI‐fields as unit of diffusion," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(2), pages 340-351, February.
    16. Dieter Ernst & Linsu Kim, 2002. "Global Production Networks, Information Technology and Knowledge Diffusion," Industry and Innovation, Taylor & Francis Journals, vol. 9(3), pages 147-153.
    17. Ernst, Dieter & Kim, Linsu, 2002. "Global production networks, knowledge diffusion, and local capability formation," Research Policy, Elsevier, vol. 31(8-9), pages 1417-1429, December.
    18. Xia Gao & Jiancheng Guan, 2012. "Network model of knowledge diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(3), pages 749-762, March.
    19. Huo, Liang’an & Cheng, Yingying & Liu, Chen & Ding, Fan, 2018. "Dynamic analysis of rumor spreading model for considering active network nodes and nonlinear spreading rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 24-35.
    20. Wang, Haiying & Wang, Jun & Ding, Liting & Wei, Wei, 2017. "Knowledge transmission model with consideration of self-learning mechanism in complex networks," Applied Mathematics and Computation, Elsevier, vol. 304(C), pages 83-92.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Haiying & Moore, Jack Murdoch & Small, Michael & Wang, Jun & Yang, Huijie & Gu, Changgui, 2022. "Epidemic dynamics on higher-dimensional small world networks," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    2. Mei, Jun & Wang, Sixin & Xia, Dan & Hu, Junhao, 2022. "Global stability and optimal control analysis of a knowledge transmission model in multilayer networks," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Haiying & Wang, Jun & Small, Michael, 2018. "Knowledge transmission model with differing initial transmission and retransmission process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 478-488.
    2. Wang, Haiying & Wang, Jun & Small, Michael & Moore, Jack Murdoch, 2019. "Review mechanism promotes knowledge transmission in complex networks," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 113-125.
    3. Zhu, He & Ma, Jing, 2018. "Knowledge diffusion in complex networks by considering time-varying information channels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 225-235.
    4. Liao, Shi-Gen & Yi, Shu-Ping, 2021. "Modeling and analysis knowledge transmission process in complex networks by considering internalization mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    5. Zhu, Hongmiao & Jin, Zhen & Yan, Xin, 2023. "A dynamics model of coupling transmission for multiple different knowledge in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    6. Jiancheng Guan & Wenjia Zhu, 2014. "How knowledge diffuses across countries: a case study in the field of management," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 2129-2144, March.
    7. Xia Gao & Jiancheng Guan, 2012. "Network model of knowledge diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(3), pages 749-762, March.
    8. Yue, Zenghui & Xu, Haiyun & Yuan, Guoting & Pang, Hongshen, 2019. "Modeling study of knowledge diffusion in scientific collaboration networks based on differential dynamics: A case study in graphene field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 375-391.
    9. Zhu, Hongmiao & Jin, Zhen, 2023. "A dynamics model of knowledge dissemination in a WeChat Group from perspective of duplex networks," Applied Mathematics and Computation, Elsevier, vol. 454(C).
    10. Liao, Shi-Gen & Yi, Shu-Ping, 2021. "Modeling and analyzing knowledge transmission process considering free-riding behavior of knowledge acquisition: A waterborne disease approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    11. Wang, Sixin & Mei, Jun & Xia, Dan & Yang, Zhanying & Hu, Junhao, 2022. "Finite-time optimal feedback control mechanism for knowledge transmission in complex networks via model predictive control," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    12. Zhu, Hongmiao & Jin, Zhen & Yan, Xin, 2022. "A dynamics model of two kinds of knowledge transmission on duplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    13. Stephen Carley & Alan L. Porter, 2012. "A forward diversity index," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 407-427, February.
    14. Zenghui Yue & Haiyun Xu & Guoting Yuan & Yan Qi, 2022. "Modeling knowledge diffusion in the disciplinary citation network based on differential dynamics," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7593-7613, December.
    15. Wang, Haiying & Moore, Jack Murdoch & Small, Michael & Wang, Jun & Yang, Huijie & Gu, Changgui, 2022. "Epidemic dynamics on higher-dimensional small world networks," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    16. Ioannidis, Evangelos & Varsakelis, Nikos & Antoniou, Ioannis, 2017. "False Beliefs in Unreliable Knowledge Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 275-295.
    17. Song, Le & Ma, Yinghong, 2022. "Evaluating tacit knowledge diffusion with algebra matrix algorithm based social networks," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    18. Xuan Liu & Shan Jiang & Hsinchun Chen & Catherine A. Larson & Mihail C. Roco, 2015. "Modeling knowledge diffusion in scientific innovation networks: an institutional comparison between China and US with illustration for nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1953-1984, December.
    19. Bei Zeng & Haihua Lyu & Zhenyue Zhao & Jiang Li, 2021. "Exploring the direction and diversity of interdisciplinary knowledge diffusion: A case study of professor Zeyuan Liu's scientific publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6253-6272, July.
    20. Ioannidis, Evangelos & Varsakelis, Nikos & Antoniou, Ioannis, 2018. "Experts in Knowledge Networks: Central Positioning and Intelligent Selections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 890-905.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:392:y:2021:i:c:s0096300320306834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.