IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i7p2444-2453.html
   My bibliography  Save this article

SIHR rumor spreading model in social networks

Author

Listed:
  • Zhao, Laijun
  • Wang, Jiajia
  • Chen, Yucheng
  • Wang, Qin
  • Cheng, Jingjing
  • Cui, Hongxin

Abstract

There are significant differences between rumor spreading and epidemic spreading in social networks, especially with consideration of the mutual effect of forgetting and remembering mechanisms. In this paper, a new rumor spreading model, Susceptible-Infected-Hibernator-Removed (SIHR) model, is developed. The model extends the classical Susceptible-Infected-Removed (SIR) rumor spreading model by adding a direct link from ignorants to stiflers and a new kind of people-Hibernators. We derive mean-field equations that describe the dynamics of the SIHR model in social networks. Then a steady-state analysis is conducted to investigate the final size of the rumor spreading under various spreading rate, stifling rate, forgetting rate, and average degree of the network. We discuss the spreading threshold and find the relationship between the final size of the rumor and two probabilities. Also Runge–Kutta method is used for numerical simulation which shows that the direct link from the ignorants to the stiflers advances the rumor terminal time and reduces the maximum rumor influence. Moreover, the forgetting and remembering mechanisms of hibernators postpone the rumor terminal time and reduce the maximum rumor influence.

Suggested Citation

  • Zhao, Laijun & Wang, Jiajia & Chen, Yucheng & Wang, Qin & Cheng, Jingjing & Cui, Hongxin, 2012. "SIHR rumor spreading model in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2444-2453.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:7:p:2444-2453
    DOI: 10.1016/j.physa.2011.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111009058
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Gu & W. Li & X. Cai, 2008. "The effect of the forget-remember mechanism on spreading," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 62(2), pages 247-255, March.
    2. Kosfeld, Michael, 2005. "Rumours and markets," Journal of Mathematical Economics, Elsevier, vol. 41(6), pages 646-664, September.
    3. Zhang, Zi-li & Zhang, Zi-qiong, 2009. "An interplay model for rumour spreading and emergency development," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4159-4166.
    4. Zhao, Laijun & Wang, Qin & Cheng, Jingjing & Chen, Yucheng & Wang, Jiajia & Huang, Wei, 2011. "Rumor spreading model with consideration of forgetting mechanism: A case of online blogging LiveJournal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2619-2625.
    5. Galam, Serge, 2003. "Modelling rumors: the no plane Pentagon French hoax case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 571-580.
    6. Nekovee, M. & Moreno, Y. & Bianconi, G. & Marsili, M., 2007. "Theory of rumour spreading in complex social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 457-470.
    7. Isham, Valerie & Harden, Simon & Nekovee, Maziar, 2010. "Stochastic epidemics and rumours on finite random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 561-576.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zan, Yongli & Wu, Jianliang & Li, Ping & Yu, Qinglin, 2014. "SICR rumor spreading model in complex networks: Counterattack and self-resistance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 159-170.
    2. Zhao, Laijun & Wang, Qin & Cheng, Jingjing & Chen, Yucheng & Wang, Jiajia & Huang, Wei, 2011. "Rumor spreading model with consideration of forgetting mechanism: A case of online blogging LiveJournal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2619-2625.
    3. Zhao, Laijun & Wang, Xiaoli & Qiu, Xiaoyan & Wang, Jiajia, 2013. "A model for the spread of rumors in Barrat–Barthelemy–Vespignani (BBV) networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5542-5551.
    4. Zhao, Laijun & Xie, Wanlin & Gao, H. Oliver & Qiu, Xiaoyan & Wang, Xiaoli & Zhang, Shuhai, 2013. "A rumor spreading model with variable forgetting rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 6146-6154.
    5. Zhao, Laijun & Wang, Qin & Cheng, Jingjing & Zhang, Ding & Ma, Ting & Chen, Yucheng & Wang, Jiajia, 2012. "The impact of authorities’ media and rumor dissemination on the evolution of emergency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 3978-3987.
    6. Zhao, Laijun & Cui, Hongxin & Qiu, Xiaoyan & Wang, Xiaoli & Wang, Jiajia, 2013. "SIR rumor spreading model in the new media age," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 995-1003.
    7. Li, Dandan & Ma, Jing, 2017. "How the government’s punishment and individual’s sensitivity affect the rumor spreading in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 284-292.
    8. Hosni, Adil Imad Eddine & Li, Kan & Ahmad, Sadique, 2020. "Analysis of the impact of online social networks addiction on the propagation of rumors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    9. Zhao, Laijun & Qiu, Xiaoyan & Wang, Xiaoli & Wang, Jiajia, 2013. "Rumor spreading model considering forgetting and remembering mechanisms in inhomogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 987-994.
    10. Jinxian Li & Yanping Hu & Zhen Jin, 2019. "Rumor Spreading of an SIHR Model in Heterogeneous Networks Based on Probability Generating Function," Complexity, Hindawi, vol. 2019, pages 1-15, June.
    11. Dayan, Fazal & Rafiq, Muhammad & Ahmed, Nauman & Baleanu, Dumitru & Raza, Ali & Ahmad, Muhammad Ozair & Iqbal, Muhammad, 2022. "Design and numerical analysis of fuzzy nonstandard computational methods for the solution of rumor based fuzzy epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    12. Amirhosein Bodaghi & Sama Goliaei, 2018. "A Novel Model For Rumor Spreading On Social Networks With Considering The Influence Of Dissenting Opinions," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-24, September.
    13. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    14. Huo, Liang’an & Jiang, Jiehui & Gong, Sixing & He, Bing, 2016. "Dynamical behavior of a rumor transmission model with Holling-type II functional response in emergency event," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 228-240.
    15. Huo, Liang-an & Huang, Peiqing & Fang, Xing, 2011. "An interplay model for authorities’ actions and rumor spreading in emergency event," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3267-3274.
    16. Chen, Guanghua, 2019. "ILSCR rumor spreading model to discuss the control of rumor spreading in emergency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 88-97.
    17. Han, Shuo & Zhuang, Fuzhen & He, Qing & Shi, Zhongzhi & Ao, Xiang, 2014. "Energy model for rumor propagation on social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 99-109.
    18. Ma, Jing & Li, Dandan & Tian, Zihao, 2016. "Rumor spreading in online social networks by considering the bipolar social reinforcement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 108-115.
    19. Jie, Renlong & Qiao, Jian & Xu, Genjiu & Meng, Yingying, 2016. "A study on the interaction between two rumors in homogeneous complex networks under symmetric conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 129-142.
    20. Wang, Jiajia & Zhao, Laijun & Huang, Rongbing, 2014. "2SI2R rumor spreading model in homogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 153-161.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:7:p:2444-2453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.