Dynamics in local influence cascading models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2016.10.021
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xuqing Huang & Irena Vodenska & Shlomo Havlin & H. Eugene Stanley, 2012. "Cascading Failures in Bi-partite Graphs: Model for Systemic Risk Propagation," Papers 1210.4973, arXiv.org, revised Jan 2013.
- R. Kinney & P. Crucitti & R. Albert & V. Latora, 2005. "Modeling cascading failures in the North American power grid," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 46(1), pages 101-107, July.
- Lee, D.-S. & Goh, K.-I. & Kahng, B. & Kim, D., 2004. "Sandpile avalanche dynamics on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(1), pages 84-91.
- Zhao, Laijun & Wang, Jiajia & Chen, Yucheng & Wang, Qin & Cheng, Jingjing & Cui, Hongxin, 2012. "SIHR rumor spreading model in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2444-2453.
- Wang, Jianwei & Rong, Lili & Zhang, Liang & Zhang, Zhongzhi, 2008. "Attack vulnerability of scale-free networks due to cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6671-6678.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Batool, Attia & Pál, Gergő & Danku, Zsuzsa & Kun, Ferenc, 2022. "Transition from localized to mean field behaviour of cascading failures in the fiber bundle model on complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xia, Yongxiang & Wang, Cong & Shen, Hui-Liang & Song, Hainan, 2020. "Cascading failures in spatial complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
- Ma, Xiangyu & Zhou, Huijie & Li, Zhiyi, 2021. "On the resilience of modern power systems: A complex network perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Bo Ouyang & Lurong Jiang & Zhaosheng Teng, 2016. "A Noise-Filtering Method for Link Prediction in Complex Networks," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-12, January.
- Hao, Yucheng & Jia, Limin & Wang, Yanhui, 2020. "Robustness of weighted networks with the harmonic closeness against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
- Li, Zhenpeng & Tang, Xijin, 2019. "Robustness of complex networks to cascading failures induced by Poisson fluctuating loads," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
- Tianhua Li & Yanchao Du & Yongbo Yuan, 2019. "Use of Variable Fuzzy Clustering to Quantify the Vulnerability of a Power Grid to Earthquake Damage," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
- Xia, Yongxiang & Fan, Jin & Hill, David, 2010. "Cascading failure in Watts–Strogatz small-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(6), pages 1281-1285.
- Kim, Minjung & Kim, Beom Jun, 2022. "Defense strategies against cascading failures in networks: “Too-big-to-fail” and “too-small-to-fail”," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
- Ren, Hai-Peng & Song, Jihong & Yang, Rong & Baptista, Murilo S. & Grebogi, Celso, 2016. "Cascade failure analysis of power grid using new load distribution law and node removal rule," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 239-251.
- Wang, Jianwei, 2013. "Mitigation strategies on scale-free networks against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2257-2264.
- Zhang, Wenping & Xia, Yongxiang & Ouyang, Bo & Jiang, Lurong, 2015. "Effect of network size on robustness of interconnected networks under targeted attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 435(C), pages 80-88.
- Chen, Zhichao & Zheng, Changjiang & Tao, Tongtong & Wang, Yanyan, 2024. "Reliability analysis of urban road traffic network under targeted attack strategies considering traffic congestion diffusion," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
- Hosni, Adil Imad Eddine & Li, Kan & Ahmad, Sadique, 2020. "Analysis of the impact of online social networks addiction on the propagation of rumors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
- Jia, Pingqi & Wang, Chao & Zhang, Gaoyu & Ma, Jianfeng, 2019. "A rumor spreading model based on two propagation channels in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 342-353.
- Jing Liu & Huapu Lu & Mingyu Chen & Jianyu Wang & Ying Zhang, 2020. "Macro Perspective Research on Transportation Safety: An Empirical Analysis of Network Characteristics and Vulnerability," Sustainability, MDPI, vol. 12(15), pages 1-18, August.
- Zan, Yongli & Wu, Jianliang & Li, Ping & Yu, Qinglin, 2014. "SICR rumor spreading model in complex networks: Counterattack and self-resistance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 159-170.
- Lahtinen, Jani & Kertész, János & Kaski, Kimmo, 2005. "Sandpiles on Watts–Strogatz type small-worlds," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(3), pages 535-547.
- Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
- Peter Bou Saba & Régis Meissonier, 2016. "Conflict contagion effects from previous IT projects: action research during preliminary phases of a DST implementation project [Effets de contagion de conflits de projets TI antérieurs:Une recherc," Post-Print hal-02161336, HAL.
- Marc van Kralingen & Diego Garlaschelli & Karolina Scholtus & Iman van Lelyveld, 2020.
"Crowded trades, market clustering, and price instability,"
Papers
2002.03319, arXiv.org.
- Marc van Kralingen & Diego Garlaschelli & Karolina Scholtus & Iman van Lelyveld, 2020. "Crowded trades, market clustering, and price instability," Working Papers 668, DNB.
- Marc van Kralingen & Diego Garlaschelli & Karolina Scholtus & Iman van Lelyveld, 2020. "Crowded trades, market clustering, and price instability," Tinbergen Institute Discussion Papers 20-007/II, Tinbergen Institute.
More about this item
Keywords
Complex networks; Cascading failure; State space;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:93:y:2016:i:c:p:182-186. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.