IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v361y2019icp87-97.html
   My bibliography  Save this article

Infectious diseases spreading on a metapopulation network coupled with its second-neighbor network

Author

Listed:
  • Feng, Shanshan
  • Jin, Zhen

Abstract

Traditional infectious diseases models on metapopulation networks focus on direct transportations (e.g., direct flights), ignoring the effect of indirect transportations. Based on global aviation network, we turn the problem of indirect flights into a question of second neighbors, and propose a susceptible-infectious-susceptible model to study disease transmission on a connected metapopulation network coupled with its second-neighbor network (SNN). We calculate the basic reproduction number, which is independent of human mobility, and we prove the global stability of disease-free and endemic equilibria of the model. Furthermore, the study shows that the behavior that all travelers travel along the SNN may hinder the spread of disease if the SNN is not connected. However, the behavior that individuals travel along the metapopulation network coupled with its SNN contributes to the spread of disease. Thus for an emerging infectious disease, if the real network and its SNN keep the same connectivity, indirect transportations may be a potential threat and need to be controlled. Our work can be generalized to high-speed train and rail networks, which may further promote other research on metapopulation networks.

Suggested Citation

  • Feng, Shanshan & Jin, Zhen, 2019. "Infectious diseases spreading on a metapopulation network coupled with its second-neighbor network," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 87-97.
  • Handle: RePEc:eee:apmaco:v:361:y:2019:i:c:p:87-97
    DOI: 10.1016/j.amc.2019.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319303923
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.05.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shao, Qi & Han, Dun, 2022. "Epidemic spreading in metapopulation networks with heterogeneous mobility rates," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    2. Wang, Runzhou & Zhang, Xinsheng & Wang, Minghu, 2024. "A two-layer model with partial mapping: Unveiling the interplay between information dissemination and disease diffusion," Applied Mathematics and Computation, Elsevier, vol. 468(C).
    3. Brandon Lieberthal & Allison M Gardner, 2021. "Connectivity, reproduction number, and mobility interact to determine communities’ epidemiological superspreader potential in a metapopulation network," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-22, March.
    4. Wang, Yanan & Wang, Jun & Zhang, Ruilin & Liu, Ou, 2022. "Enhanced by mobility? Effect of users’ mobility on information diffusion in coupled online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:361:y:2019:i:c:p:87-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.