IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v446y2023ics0096300323000498.html
   My bibliography  Save this article

Influence of behavioral adoption preference based on heterogeneous population on multiple weighted networks

Author

Listed:
  • Tian, Yang
  • Tian, Hui
  • Cui, Yajuan
  • Zhu, Xuzhen
  • Cui, Qimei

Abstract

The study of behavioral propagation is taken more into account intimate heterogeneity on social networks. Meanwhile, with the development of information technology, people present a multiplicity of social ways, i.e., individuals normally receive or spread information on different social networks. More importantly, the behavioral preference of heterogenous population lacks in-depth research on the information propagation. Firstly, a multi-layer network with edge weighted distribution is considered. Then, we build a trapezoid-like and a triangle-like probability functions to represent individual continuous fashion trend (ICFT) and individual fashion passion trend (IFPT) behaviors separately, defining the adoption behavior preference of different population. Furthermore, a generalized edge-based compartmental theory including edge weight, ICFT and IFPT thresholds is proposed to reveal the behavioral preference. Through simulated experiments, decreasing the proportion of sensitive individuals can raise a hybrid phase transition, in which the final adoption size first increases continuously at the first critical value, and then increases discontinuously at the second critical value. Moreover, when the proportion of sensitive individuals is fixed, the strong adoption capacity of individuals can induce a discontinuous phase transition. Contrarily, the weak adoption capacity of individuals can induce a continuous phase transition. Finally, the edge weight and degree heterogeneity can alter the behavioral propagation on social networks.

Suggested Citation

  • Tian, Yang & Tian, Hui & Cui, Yajuan & Zhu, Xuzhen & Cui, Qimei, 2023. "Influence of behavioral adoption preference based on heterogeneous population on multiple weighted networks," Applied Mathematics and Computation, Elsevier, vol. 446(C).
  • Handle: RePEc:eee:apmaco:v:446:y:2023:i:c:s0096300323000498
    DOI: 10.1016/j.amc.2023.127880
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323000498
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.127880?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2022. "Homophily in competing behavior spreading among the heterogeneous population with higher-order interactions," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    2. Karimi, Fariba & Holme, Petter, 2013. "Threshold model of cascades in empirical temporal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3476-3483.
    3. Wang, Chaoqian & Szolnoki, Attila, 2022. "Involution game with spatio-temporal heterogeneity of social resources," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    4. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2023. "Pathogen diversity in meta-population networks," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    5. Yang, Qiwen & Zhu, Xuzhen & Tian, Yang & Wang, Guanglu & Zhang, Yuexia & Chen, Lei, 2021. "The influence of heterogeneity of adoption thresholds on limited information spreading," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    6. Cai, Shi-Min & Chen, Xuan-Hao & Ye, Xi-Jun & Tang, Ming, 2019. "Precisely identifying the epidemic thresholds in real networks via asynchronous updating," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 377-388.
    7. Hu, Junlang & Zhu, Linhe, 2021. "Turing pattern analysis of a reaction-diffusion rumor propagation system with time delay in both network and non-network environments," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    8. Tian, Yang & Zhu, Xuzhen & Yang, Qiwen & Tian, Hui & Cui, Qimei, 2022. "Propagation characteristic of adoption thresholds heterogeneity in double-layer networks with edge weight distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    9. Cui, Yajuan & Wei, Ruichen & Tian, Yang & Tian, Hui & Zhu, Xuzhen, 2022. "Information propagation influenced by individual fashion-passion trend on multi-layer weighted network," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    10. Wang, Wei & Li, Wenyao & Lin, Tao & Wu, Tao & Pan, Liming & Liu, Yanbing, 2022. "Generalized k-core percolation on higher-order dependent networks," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    11. Nie, Yanyi & Li, Wenyao & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Markovian approach to tackle competing pathogens in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Yang & Tian, Hui & Cui, Qimei & Zhu, Xuzhen, 2024. "Phase transition phenomena in social propagation with dynamic fashion tendency and individual contact," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2023. "Pathogen diversity in meta-population networks," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    3. You, Xuemei & Zhang, Man & Ma, Yinghong & Tan, Jipeng & Liu, Zhiyuan, 2023. "Impact of higher-order interactions and individual emotional heterogeneity on information-disease coupled dynamics in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    4. Li, Wenyao & Cai, Meng & Zhong, Xiaoni & Liu, Yanbing & Lin, Tao & Wang, Wei, 2023. "Coevolution of epidemic and infodemic on higher-order networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    5. Huo, Liang’an & Yu, Yue, 2023. "The impact of the self-recognition ability and physical quality on coupled negative information-behavior-epidemic dynamics in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    6. Mariana Azevedo & Paulo Reis Mourão, 2023. "The evolution of epidemics and the publication of epidemic news in the local press: a study in the region of Braga (Northern Portugal)," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.
    7. Ma, Ning & Yu, Guang & Jin, Xin, 2024. "Dynamics of competing public sentiment contagion in social networks incorporating higher-order interactions during the dissemination of public opinion," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    8. Wu, Qingchu & Kabir, K.M. Ariful, 2023. "Compact pairwise methods for susceptible–infected–susceptible epidemics on weighted heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    9. Fariba Karimi & Matthias Raddant, 2016. "Cascades in Real Interbank Markets," Computational Economics, Springer;Society for Computational Economics, vol. 47(1), pages 49-66, January.
    10. Liu, Run-Ran & Chu, Changchang & Meng, Fanyuan, 2023. "Higher-order interdependent percolation on hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    11. Xie, Ying & Zhou, Ping & Yao, Zhao & Ma, Jun, 2022. "Response mechanism in a functional neuron under multiple stimuli," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    12. Xianliang Liu & Zishen Yang & Wei Wang, 2021. "The t-latency bounded strong target set selection problem in some kinds of special family of graphs," Journal of Combinatorial Optimization, Springer, vol. 41(1), pages 105-117, January.
    13. Hu, Ping & Geng, Dongqing & Lin, Tao & Ding, Li, 2021. "Coupled propagation dynamics on multiplex activity-driven networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    14. Pu, Cun-Lai & Cui, Wei, 2015. "Vulnerability of complex networks under path-based attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 622-629.
    15. Yang, Qiwen & Zhu, Xuzhen & Tian, Yang & Wang, Guanglu & Zhang, Yuexia & Chen, Lei, 2021. "The influence of heterogeneity of adoption thresholds on limited information spreading," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    16. Wang, Haiying & Moore, Jack Murdoch & Small, Michael & Wang, Jun & Yang, Huijie & Gu, Changgui, 2022. "Epidemic dynamics on higher-dimensional small world networks," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    17. Wang, Chaoqian & Sun, Chengbin, 2023. "Public goods game across multilayer populations with different densities," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    18. Huang, Chaochao & Wang, Chaoqian, 2024. "Memory-based involution dilemma on square lattices," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    19. Zhu, Shu-Shan & Zhu, Xu-Zhen & Wang, Jian-Qun & Zhang, Zeng-Ping & Wang, Wei, 2019. "Social contagions on multiplex networks with heterogeneous population," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 105-113.
    20. Mitja Steinbacher & Matthias Raddant & Fariba Karimi & Eva Camacho Cuena & Simone Alfarano & Giulia Iori & Thomas Lux, 2021. "Advances in the agent-based modeling of economic and social behavior," SN Business & Economics, Springer, vol. 1(7), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:446:y:2023:i:c:s0096300323000498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.