IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v185y2024ics0960077924007343.html
   My bibliography  Save this article

Parameter identification method of information propagation models based on different network structures

Author

Listed:
  • Pan, Yuxuan
  • Zhu, Linhe

Abstract

In this paper, we create the rumor propagation model with diffusion behavior by considering the state of the rumor in both the time dimension and the space dimension comprehensively. Meanwhile, we demonstrate the reaction–diffusion model using Turing patterns after determining the prerequisites for their occurrence. In order to achieve the purpose of predicting and controlling rumors in time, we choose to utilize the parameter identification technique based on the Barzilai–Borwein (BB) algorithm and the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm. In the numerical simulation section, we first investigate how the rumor avoidance rate and cross-diffusion coefficients affect the propagation of rumors. Then, based on a continuous spatio-temporal system and complex network system, respectively, we perform parameter identification for the propagation model. We thoroughly examine how the type of algorithm, the quantity of unknown parameters, and the network structure affect the identification outcomes in terms of the cost function, error curve, and program function time. When the model constructed in this paper is used for parameter identification on different network structures, the error gap between the final value and the target value is not significant. However, the cost function and time consumption for parameter identification on complex networks are much smaller than on the continuous medium.

Suggested Citation

  • Pan, Yuxuan & Zhu, Linhe, 2024. "Parameter identification method of information propagation models based on different network structures," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:chsofr:v:185:y:2024:i:c:s0960077924007343
    DOI: 10.1016/j.chaos.2024.115182
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924007343
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115182?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Linhe & Tang, Yuxuan & Shen, Shuling, 2023. "Pattern study and parameter identification of a reaction-diffusion rumor propagation system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    2. Ding, Haixin & Xie, Li, 2023. "Simulating rumor spreading and rebuttal strategy with rebuttal forgetting: An agent-based modeling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    3. Zhang, Ziyu & Mei, Xuehui & Jiang, Haijun & Luo, Xupeng & Xia, Yang, 2023. "Dynamical analysis of Hyper-SIR rumor spreading model," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    4. Yang, Anzhi & Huang, Xianying & Cai, Xiumei & Zhu, Xiaofei & Lu, Ling, 2019. "ILSR rumor spreading model with degree in complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    5. Jang, Junyoung & Kwon, Hee-Dae & Lee, Jeehyun, 2020. "Optimal control problem of an SIR reaction–diffusion model with inequality constraints," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 136-151.
    6. Muolo, Riccardo & Gallo, Luca & Latora, Vito & Frasca, Mattia & Carletti, Timoteo, 2023. "Turing patterns in systems with high-order interactions," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    7. Ke, Yue & Zhu, Linhe & Wu, Peng & Shi, Lei, 2022. "Dynamics of a reaction-diffusion rumor propagation model with non-smooth control," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    8. Li, Chao & Wang, Li & Sun, Shiwen & Xia, Chengyi, 2018. "Identification of influential spreaders based on classified neighbors in real-world complex networks," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 512-523.
    9. Zan, Yongli, 2018. "DSIR double-rumors spreading model in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 191-202.
    10. Nekovee, M. & Moreno, Y. & Bianconi, G. & Marsili, M., 2007. "Theory of rumour spreading in complex social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 457-470.
    11. Lei Shi & Jiaying Zhou & Yong Ye, 2023. "Pattern Formation in a Predator–Prey Model with Allee Effect and Hyperbolic Mortality on Multiplex Networks," Mathematics, MDPI, vol. 11(15), pages 1-15, July.
    12. Ghorai, Santu & Chakraborty, Bhaskar & Bairagi, Nandadulal, 2021. "Preferential selection of zooplankton and emergence of spatiotemporal patterns in plankton population," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    13. Lv, Xijian & Fan, Dongmei & Li, Qiang & Wang, Jinling & Zhou, Li, 2023. "Simplicial SIR rumor propagation models with delay in both homogeneous and heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
    14. Hu, Junlang & Zhu, Linhe, 2021. "Turing pattern analysis of a reaction-diffusion rumor propagation system with time delay in both network and non-network environments," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    15. Pengyuan Li & Zhan Wang & Dan Luo & Hongtruong Pham, 2020. "Global Convergence of a Modified Two-Parameter Scaled BFGS Method with Yuan-Wei-Lu Line Search for Unconstrained Optimization," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongying Xiao & Zhaofeng Li & Yuanyuan Zhang & Hong Lin & Yuxiao Zhao, 2023. "A Dual Rumor Spreading Model with Consideration of Fans versus Ordinary People," Mathematics, MDPI, vol. 11(13), pages 1-14, July.
    2. Xiaojing Zhong & Yawen Zheng & Junxian Xie & Ying Xie & Yuqing Peng, 2024. "Multi-Agent Collaborative Rumor-Debunking Strategies on Virtual-Real Network Layer," Mathematics, MDPI, vol. 12(3), pages 1-22, January.
    3. Zhu, Linhe & Chen, Siyi & Shen, Shuling, 2024. "Pattern dynamics analysis of a reaction–diffusion network propagation model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 425-444.
    4. Dong, Yafang & Huo, Liang’an, 2024. "A multi-scale mathematical model of rumor propagation considering both intra- and inter-individual dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    5. Yanchao Liu & Pengzhou Zhang & Lei Shi & Junpeng Gong, 2023. "A Survey of Information Dissemination Model, Datasets, and Insight," Mathematics, MDPI, vol. 11(17), pages 1-30, August.
    6. Zhang, Yaming & Su, Yanyuan & Weigang, Li & Liu, Haiou, 2019. "Interacting model of rumor propagation and behavior spreading in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 168-177.
    7. Chen, Shanshan & Jiang, Haijun & Li, Liang & Li, Jiarong, 2020. "Dynamical behaviors and optimal control of rumor propagation model with saturation incidence on heterogeneous networks," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Zhu, Linhe & Zheng, Wenxin & Shen, Shuling, 2023. "Dynamical analysis of a SI epidemic-like propagation model with non-smooth control," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    9. Du, Yuxian & Lin, Xi & Pan, Ye & Chen, Zhaoxin & Xia, Huan & Luo, Qian, 2023. "Identifying influential airports in airline network based on failure risk factors with TOPSIS," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    10. Sahafizadeh, Ebrahim & Tork Ladani, Behrouz, 2023. "Soft rumor control in mobile instant messengers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    11. Tan, Jipeng & Zhang, Man & Liu, Fengming, 2024. "Online-Offline Higher-Order Rumor Propagation Model Based on Quantum Cellular Automata Considering Social Adaptation," Applied Mathematics and Computation, Elsevier, vol. 461(C).
    12. Jiang, Guoyin & Li, Saipeng & Li, Minglei, 2020. "Dynamic rumor spreading of public opinion reversal on Weibo based on a two-stage SPNR model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    13. Guanghui Yan & Jie Tang & Huayan Pei & Wenwen Chang, 2024. "Research on rumor propagation and rumor refutation strategies in complex network environment," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(9), pages 1-12, September.
    14. Huo, Liang’an & Chen, Sijing, 2020. "Rumor propagation model with consideration of scientific knowledge level and social reinforcement in heterogeneous network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    15. Ding, Haixin & Xie, Li, 2024. "The applicability of positive information in negative opinion management: An attitude-laden communication perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 645(C).
    16. Tian, Yang & Tian, Hui & Cui, Qimei & Zhu, Xuzhen, 2024. "Phase transition phenomena in social propagation with dynamic fashion tendency and individual contact," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    17. Yin, Haofei & Zhang, Aobo & Zeng, An, 2023. "Identifying hidden target nodes for spreading in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    18. Javier Cifuentes-Faura & Ursula Faura-Martínez & Matilde Lafuente-Lechuga, 2022. "Mathematical Modeling and the Use of Network Models as Epidemiological Tools," Mathematics, MDPI, vol. 10(18), pages 1-14, September.
    19. Cheng, Yingying & Huo, Liang'an & Zhao, Laijun, 2022. "Stability analysis and optimal control of rumor spreading model under media coverage considering time delay and pulse vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    20. Wenjia Liu & Jian Wang & Yanfeng Ouyang, 2022. "Rumor Transmission in Online Social Networks Under Nash Equilibrium of a Psychological Decision Game," Networks and Spatial Economics, Springer, vol. 22(4), pages 831-854, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:185:y:2024:i:c:s0960077924007343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.