IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45427-4.html
   My bibliography  Save this article

Traffic light optimization with low penetration rate vehicle trajectory data

Author

Listed:
  • Xingmin Wang

    (University of Michigan)

  • Zachary Jerome

    (University of Michigan)

  • Zihao Wang

    (University of Michigan)

  • Chenhao Zhang

    (University of Michigan)

  • Shengyin Shen

    (University of Michigan Transportation Research Institute)

  • Vivek Vijaya Kumar

    (General Motors Research and Development)

  • Fan Bai

    (General Motors Research and Development)

  • Paul Krajewski

    (General Motors Research and Development)

  • Danielle Deneau

    (Road Commission for Oakland County)

  • Ahmad Jawad

    (Road Commission for Oakland County)

  • Rachel Jones

    (Road Commission for Oakland County)

  • Gary Piotrowicz

    (Road Commission for Oakland County)

  • Henry X. Liu

    (University of Michigan
    University of Michigan Transportation Research Institute
    Mcity, University of Michigan)

Abstract

Traffic light optimization is known to be a cost-effective method for reducing congestion and energy consumption in urban areas without changing physical road infrastructure. However, due to the high installation and maintenance costs of vehicle detectors, most intersections are controlled by fixed-time traffic signals that are not regularly optimized. To alleviate traffic congestion at intersections, we present a large-scale traffic signal re-timing system that uses a small percentage of vehicle trajectories as the only input without reliance on any detectors. We develop the probabilistic time-space diagram, which establishes the connection between a stochastic point-queue model and vehicle trajectories under the proposed Newellian coordinates. This model enables us to reconstruct the recurrent spatial-temporal traffic state by aggregating sufficient historical data. Optimization algorithms are then developed to update traffic signal parameters for intersections with optimality gaps. A real-world citywide test of the system was conducted in Birmingham, Michigan, and demonstrated that it decreased the delay and number of stops at signalized intersections by up to 20% and 30%, respectively. This system provides a scalable, sustainable, and efficient solution to traffic light optimization and can potentially be applied to every fixed-time signalized intersection in the world.

Suggested Citation

  • Xingmin Wang & Zachary Jerome & Zihao Wang & Chenhao Zhang & Shengyin Shen & Vivek Vijaya Kumar & Fan Bai & Paul Krajewski & Danielle Deneau & Ahmad Jawad & Rachel Jones & Gary Piotrowicz & Henry X. L, 2024. "Traffic light optimization with low penetration rate vehicle trajectory data," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45427-4
    DOI: 10.1038/s41467-024-45427-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45427-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45427-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    2. Laval, Jorge A. & Leclercq, Ludovic, 2013. "The Hamilton–Jacobi partial differential equation and the three representations of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 17-30.
    3. Flötteröd, G. & Osorio, C., 2017. "Stochastic network link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 180-209.
    4. Little, John D. C. & Kelson, Mark D. & Gartner, Nathan H., 1981. "MAXBAND : a versatile program for setting signals on arteries and triangular networks," Working papers 1185-81., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    5. Comert, Gurcan & Cetin, Mecit, 2009. "Queue length estimation from probe vehicle location and the impacts of sample size," European Journal of Operational Research, Elsevier, vol. 197(1), pages 196-202, August.
    6. Zheng, Fangfang & Jabari, Saif Eddin & Liu, Henry X. & Lin, DianChao, 2018. "Traffic state estimation using stochastic Lagrangian dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 143-165.
    7. Gartner, Nathan H. & Assman, Susan F. & Lasaga, Fernando & Hou, Dennis L., 1991. "A multi-band approach to arterial traffic signal optimization," Transportation Research Part B: Methodological, Elsevier, vol. 25(1), pages 55-74, February.
    8. Carolina Osorio & Jana Yamani, 2017. "Analytical and Scalable Analysis of Transient Tandem Markovian Finite Capacity Queueing Networks," Transportation Science, INFORMS, vol. 51(3), pages 823-840, August.
    9. Osorio, Carolina & Wang, Carter, 2017. "On the analytical approximation of joint aggregate queue-length distributions for traffic networks: A stationary finite capacity Markovian network approach," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 305-339.
    10. Sumalee, A. & Zhong, R.X. & Pan, T.L. & Szeto, W.Y., 2011. "Stochastic cell transmission model (SCTM): A stochastic dynamic traffic model for traffic state surveillance and assignment," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 507-533, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Lu & Carolina Osorio, 2018. "A Probabilistic Traffic-Theoretic Network Loading Model Suitable for Large-Scale Network Analysis," Service Science, INFORMS, vol. 52(6), pages 1509-1530, December.
    2. Flötteröd, G. & Osorio, C., 2017. "Stochastic network link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 180-209.
    3. Zheng, Fangfang & Jabari, Saif Eddin & Liu, Henry X. & Lin, DianChao, 2018. "Traffic state estimation using stochastic Lagrangian dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 143-165.
    4. Yuan, Tianchen & Ioannou, Petros A., 2023. "Coordinated Traffic Flow Control in a Connected Environment," Institute of Transportation Studies, Working Paper Series qt6q67f9z4, Institute of Transportation Studies, UC Davis.
    5. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "A stochastic dynamic network loading model for mixed traffic with autonomous and human-driven vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    6. Storm, Pieter Jacob & Mandjes, Michel & van Arem, Bart, 2022. "Efficient evaluation of stochastic traffic flow models using Gaussian process approximation," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 126-144.
    7. Xiao Chen & Carolina Osorio & Bruno Filipe Santos, 2019. "Simulation-Based Travel Time Reliable Signal Control," Transportation Science, INFORMS, vol. 53(2), pages 523-544, March.
    8. Li, Pengfei & Mirchandani, Pitu & Zhou, Xuesong, 2015. "Solving simultaneous route guidance and traffic signal optimization problem using space-phase-time hypernetwork," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 103-130.
    9. Florin, Ryan & Olariu, Stephan, 2020. "Towards real-time density estimation using vehicle-to-vehicle communications," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 435-456.
    10. Bai, Lu & Wong, S.C. & Xu, Pengpeng & Chow, Andy H.F. & Lam, William H.K., 2021. "Calibration of stochastic link-based fundamental diagram with explicit consideration of speed heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 524-539.
    11. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    12. Lo, Hong K., 1999. "A novel traffic signal control formulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(6), pages 433-448, August.
    13. Zhou, Hao & Toth, Christopher & Guensler, Randall & Laval, Jorge, 2022. "Hybrid modeling of lane changes near freeway diverges," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 1-14.
    14. Yu, Chunhui & Ma, Wanjing & Yang, Xiaoguang, 2020. "A time-slot based signal scheme model for fixed-time control at isolated intersections," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 176-192.
    15. Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
    16. Hao, Peng & Ban, Xuegang, 2015. "Long queue estimation for signalized intersections using mobile data," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 54-73.
    17. Cantarella, G.E. & Pavone, G. & Vitetta, A., 2006. "Heuristics for urban road network design: Lane layout and signal settings," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1682-1695, December.
    18. Varga, Balázs & Tettamanti, Tamás & Kulcsár, Balázs & Qu, Xiaobo, 2020. "Public transport trajectory planning with probabilistic guarantees," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 81-101.
    19. Watling, David P. & Hazelton, Martin L., 2018. "Asymptotic approximations of transient behaviour for day-to-day traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 90-105.
    20. Jabari, Saif Eddin & Liu, Henry X., 2013. "A stochastic model of traffic flow: Gaussian approximation and estimation," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 15-41.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45427-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.