IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v603y2022ics0378437122005465.html
   My bibliography  Save this article

Modeling impacts of the tunnel section on the mixed traffic flow: A case study of Jiaodong’ao Tunnel in China

Author

Listed:
  • Lu, Xingyu
  • Zhu, Huibing
  • Wang, Jieguang
  • Zhang, Ming
  • Zhou, Chunchun
  • Zhang, Huafeng

Abstract

Modeling impacts of the tunnel section on the mixed traffic flow would be a challenge. It needs to figure out the traffic regulations of the tunnel section that vehicles must comply with. Also it requires depicting the different driving behaviors of cars and trucks when they run into the tunnel. To deal with these problems, we propose a two-lane cellular automaton (CA) traffic model with a tunnel section based on the single-lane CA model proposed by Guzmán (LAI-E model). The asymmetric lane-changing rules with right-lane preference are adopted for trucks, and the symmetrical lane-changing rules are adopted for cars. Especially, the impact of trucks on cars’ driving pattern is taken into account. The drivers’ individual character difference, i.e., cautious and radical, are also considered. The results indicate that the time series of traffic flow, vehicles’ speed in different tunnel sections and trucks’ proportions obtained from the numerical simulation are in good agreement with those obtained from the measured data. The phenomena of the speed fluctuation at the entrance and the exit of the tunnel are reproduced. Besides, the driving pattern of cars’ keeping away from trucks is captured from the spatial–temporal diagrams, and the unbalanced utilization of two lanes, i.e., large usage in the left lane and small usage in the right lane, is revealed. The further simulation indicates that the unbalanced utilization of two lanes will be improved if the trucks’ blocking influence could be neglected. The results will provide a theoretical reference for the optimization of traffic flow in the highway tunnel sections.

Suggested Citation

  • Lu, Xingyu & Zhu, Huibing & Wang, Jieguang & Zhang, Ming & Zhou, Chunchun & Zhang, Huafeng, 2022. "Modeling impacts of the tunnel section on the mixed traffic flow: A case study of Jiaodong’ao Tunnel in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
  • Handle: RePEc:eee:phsmap:v:603:y:2022:i:c:s0378437122005465
    DOI: 10.1016/j.physa.2022.127840
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122005465
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127840?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Junwei & Qian, Yongsheng & Lv, Ziwen & Yin, Fan & Zhu, Leipeng & Zhang, Yongzhi & Xu, Dejie, 2021. "Expressway traffic flow under the combined bottleneck of accident and on-ramp in framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    2. Lyu, Zelin & Hu, Xiaojian & Zhang, Fang & Liu, Tenghui & Cui, Zhiwei, 2022. "Heterogeneous traffic flow characteristics on the highway with a climbing lane under different truck percentages: The framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    3. Hu, Xiaojian & Hao, Xiatong & Wang, Han & Su, Ziyi & Zhang, Fang, 2020. "Research on on-street temporary parking effects based on cellular automaton model under the framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    4. Hu, Zejing & Smirnova, M.N. & Zhang, Yongliang & Smirnov, N.N. & Zhu, Zuojin, 2021. "Estimation of travel time through a composite ring road by a viscoelastic traffic flow model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 501-521.
    5. Lárraga, M.E. & Alvarez-Icaza, L., 2010. "Cellular automaton model for traffic flow based on safe driving policies and human reactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5425-5438.
    6. Hu, Xiaojian & Zhang, Fang & Lu, Jian & Liu, Mingyang & Ma, Yongfeng & Wan, Qian, 2019. "Research on influence of sun glare in urban tunnels based on cellular automaton model in the framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    7. H. B. Zhu & G. Y. Chen & H. Lin & Y. J. Zhou, 2018. "The impact of aggressive driving behaviors on multi-lane highway traffic flow," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 29(07), pages 1-15, July.
    8. Li, Xin & Li, Xingang & Xiao, Yao & Jia, Bin, 2016. "Modeling mechanical restriction differences between car and heavy truck in two-lane cellular automata traffic flow model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 49-62.
    9. Hu, Xiaojian & Liu, Tenghui & Hao, Xiatong & Su, Ziyi & Yang, Zhikui, 2021. "Research on the influence of bus bay on traffic flow in adjacent lane: Simulations in the framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    10. Zhu, H.B. & Zhang, N.X. & Wu, W.J., 2015. "A modified two-lane traffic model considering drivers’ personality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 359-367.
    11. Qi-Lang Li & Rui Jiang & Zhong-Jun Ding & Bing-Hong Wang, 2020. "A new cellular automata traffic flow model considering asynchronous update of vehicle velocity," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 31(12), pages 1-10, December.
    12. Zhang, Jian & Li, Xiling & Wang, Rui & Sun, Xiaosi & Cui, Xiaochao, 2012. "Traffic bottleneck characteristics caused by the reduction of lanes in an optimal velocity model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2381-2389.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Tian & Liu, Gang & Hu, Xiaoxi & Bian, Dingding, 2024. "Traffic behavior analysis of the urban expressway ramp based on continuous cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Shirui & Ling, Shuai & Zhu, Chenqiang & Tian, Junfang, 2022. "Cellular automaton model with the multi-anticipative effect to reproduce the empirical findings of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    2. Jing, Dian & Yao, Enjian & Chen, Rongsheng, 2023. "Moving characteristics analysis of mixed traffic flow of CAVs and HVs around accident zones," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    3. Hu, Xiaojian & Qiao, Longqi & Hao, Xiatong & Lin, Chenxi & Liu, Tenghui, 2022. "Research on the impact of entry points on urban arterial roads in the framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    4. Cheng, Wangjun & Zhang, Peng & Zhu, Huibing & Shen, Xiang & Ye, Luting, 2023. "Analysis of construction area’s impacts on traffic flow: A case study on Hangzhou Bay Bridge in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    5. Hu, Xiaojian & Lin, Chenxi & Hao, Xiatong & Lu, RuiYing & Liu, TengHui, 2021. "Influence of tidal lane on traffic breakdown and spatiotemporal congested patterns at moving bottleneck in the framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    6. Lyu, Zelin & Hu, Xiaojian & Zhang, Fang & Liu, Tenghui & Cui, Zhiwei, 2022. "Heterogeneous traffic flow characteristics on the highway with a climbing lane under different truck percentages: The framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    7. Zhang, Xiangzhou & Shi, Zhongke & Yu, Shaowei & Ma, Lijing, 2023. "A new car-following model considering driver’s desired visual angle on sharp curves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    8. Hou, Guangyang & Chen, Suren & Bao, Yulong, 2022. "Development of travel time functions for disrupted urban arterials with microscopic traffic simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    9. Shang, Xue-Cheng & Li, Xin-Gang & Xie, Dong-Fan & Jia, Bin & Jiang, Rui & Liu, Feng, 2022. "A data-driven two-lane traffic flow model based on cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    10. Kong, Dewen & Sun, Lishan & Li, Jia & Xu, Yan, 2021. "Modeling cars and trucks in the heterogeneous traffic based on car–truck combination effect using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    11. Shang, Xue-Cheng & Li, Xin-Gang & Xie, Dong-Fan & Jia, Bin & Jiang, Rui, 2020. "Two-lane traffic flow model based on regular hexagonal cells with realistic lane changing behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    12. Xue Wang & Yu Xue & Suwei Feng, 2023. "Traffic fuel consumption evaluation of the on-ramp with acceleration lane based on cellular automata," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(6), pages 1-11, June.
    13. Dailisan, Damian N. & Lim, May T., 2020. "Crossover transitions in a bus–car mixed-traffic cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    14. Wu, Jinchao & Chen, Bokui & Zhang, Kai & Zhou, Jun & Miao, Lixin, 2018. "Ant pheromone route guidance strategy in intelligent transportation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 591-603.
    15. Wang, Lichao & Yang, Min & Li, Ye & Hou, Yiqi, 2022. "A model of lane-changing intention induced by deceleration frequency in an automatic driving environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    16. Yang, Haifei & Lu, Jian & Hu, Xiaojian & Jiang, Jun, 2013. "A cellular automaton model based on empirical observations of a driver’s oscillation behavior reproducing the findings from Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4009-4018.
    17. Qi, Le & Zheng, Zhongyi & Gang, Longhui, 2017. "A cellular automaton model for ship traffic flow in waterways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 705-717.
    18. Wang, Xuan & Zeng, Junwei & Qian, Yongsheng & Wei, Xuting & Zhang, Futao, 2024. "Heterogeneous traffic flow of expressway with Level 2 autonomous vehicles considering moving bottlenecks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    19. Tian, Tian & Liu, Gang & Hu, Xiaoxi & Bian, Dingding, 2024. "Traffic behavior analysis of the urban expressway ramp based on continuous cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    20. Hu, Xiaojian & Hao, Xiatong & Wang, Han & Su, Ziyi & Zhang, Fang, 2020. "Research on on-street temporary parking effects based on cellular automaton model under the framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:603:y:2022:i:c:s0378437122005465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.