IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v401y2014icp82-102.html
   My bibliography  Save this article

Traffic disruption and recovery in road networks

Author

Listed:
  • Zhang, Lele
  • de Gier, Jan
  • Garoni, Timothy M.

Abstract

We study the impact of disruptions on road networks, and the recovery process after the disruption is removed from the system. Such disruptions could be caused by vehicle breakdown or illegal parking. We analyze the transient behavior using domain wall theory, and compare these predictions with simulations of a stochastic cellular automaton model. We find that the domain wall model can reproduce the time evolution of flow and density during the disruption and the recovery processes, for both one-dimensional systems and two-dimensional networks.

Suggested Citation

  • Zhang, Lele & de Gier, Jan & Garoni, Timothy M., 2014. "Traffic disruption and recovery in road networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 82-102.
  • Handle: RePEc:eee:phsmap:v:401:y:2014:i:c:p:82-102
    DOI: 10.1016/j.physa.2014.01.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114000454
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.01.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Komada, Kazuhito & Masukura, Shuichi & Nagatani, Takashi, 2009. "Effect of gravitational force upon traffic flow with gradients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2880-2894.
    2. Tanaka, Katsunori & Nagai, Ryoichi & Nagatani, Takashi, 2006. "Traffic jam and discontinuity induced by slowdown in two-stage optimal-velocity model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 756-768.
    3. Nagai, Ryoichi & Hanaura, Hirotoshi & Tanaka, Katsunori & Nagatani, Takashi, 2006. "Discontinuity at edge of traffic jam induced by slowdown," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 464-472.
    4. Hanaura, Hirotoshi & Nagatani, Takashi & Tanaka, Katsunori, 2007. "Jam formation in traffic flow on a highway with some slowdown sections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 419-430.
    5. Bin Jia & Rui Jiang & Qing-Song Wu, 2003. "The Traffic Bottleneck Effects Caused By The Lane Closing In The Cellular Automata Model," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 14(10), pages 1295-1303.
    6. Zhang, Jian & Li, Xiling & Wang, Rui & Sun, Xiaosi & Cui, Xiaochao, 2012. "Traffic bottleneck characteristics caused by the reduction of lanes in an optimal velocity model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2381-2389.
    7. Anja Ebersbach & Johannes J. Schneider, 2004. "Two-Lane Traffic With Places Of Obstruction To Traffic," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 535-544.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Lele & Finn, Caley & Garoni, Timothy M. & de Gier, Jan, 2018. "Behaviour of traffic on a link with traffic light boundaries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 116-138.
    2. Nguyen, Win P.V. & Nof, Shimon Y., 2020. "Strategic lines of collaboration in response to disruption propagation (CRDP) through cyber-physical systems," International Journal of Production Economics, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Chun-Xiu & Zhang, Peng & Wong, S.C. & Choi, Keechoo, 2014. "Steady-state traffic flow on a ring road with up- and down-slopes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 85-93.
    2. Sheu, Jiuh-Biing & Wu, Hsi-Jen, 2015. "Driver perception uncertainty in perceived relative speed and reaction time in car following – A quantum optical flow perspective," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 257-274.
    3. Li, Yongfu & Zhao, Hang & Zhang, Li & Zhang, Chao, 2018. "An extended car-following model incorporating the effects of lateral gap and gradient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 177-189.
    4. Ramadan, Ahmed & Roorda, Matthew, 2016. "Impacts of Illegal On-Street Parking on Toronto's CBD Congestion," 57th Transportation Research Forum (51st CTRF) Joint Conference, Toronto, Ontario, May 1-4, 2016 319289, Transportation Research Forum.
    5. Yin, Jiacheng & Li, Zongping & Cao, Peng & Li, Linheng & Ju, Yanni, 2023. "Car-following modeling based on Morse model with consideration of road slope in connected vehicles environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    6. Hongsheng Qi & Meiqi Liu & Lihui Zhang & Dianhai Wang, 2016. "Tracing Road Network Bottleneck by Data Driven Approach," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-16, May.
    7. Davis, L.C., 2016. "Improving traffic flow at a 2-to-1 lane reduction with wirelessly connected, adaptive cruise control vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 320-332.
    8. Jinhua Tan & Li Gong & Xuqian Qin, 2019. "Effect of Imitation Phenomenon on Two-Lane Traffic Safety in Fog Weather," IJERPH, MDPI, vol. 16(19), pages 1-15, October.
    9. Tang, Yuan & Xue, Yu & Huang, Mu-Yang & Wen, Qi-Yun & Cen, Bing-Ling & Chen, Dong, 2023. "Bifurcation analysis and control strategy for a car-following model considering jerk behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    10. Li, Xiang & Sun, Jian-Qiao, 2017. "Studies of vehicle lane-changing dynamics and its effect on traffic efficiency, safety and environmental impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 41-58.
    11. Kaur, Ramanpreet & Sharma, Sapna, 2018. "Modeling and simulation of driver’s anticipation effect in a two lane system on curved road with slope," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 110-120.
    12. Lu, Xingyu & Zhu, Huibing & Wang, Jieguang & Zhang, Ming & Zhou, Chunchun & Zhang, Huafeng, 2022. "Modeling impacts of the tunnel section on the mixed traffic flow: A case study of Jiaodong’ao Tunnel in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    13. Dailisan, Damian N. & Lim, May T., 2019. "Vehicular traffic modeling with greedy lane-changing and inordinate waiting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 715-723.
    14. Junyan Han & Xiaoyuan Wang & Gang Wang, 2022. "Modeling the Car-Following Behavior with Consideration of Driver, Vehicle, and Environment Factors: A Historical Review," Sustainability, MDPI, vol. 14(13), pages 1-27, July.
    15. Chen, Chen & Chen, Jianqiao & Guo, Xiwei, 2010. "Influences of overtaking on two-lane traffic with signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 141-148.
    16. Cheng, Wangjun & Zhang, Peng & Zhu, Huibing & Shen, Xiang & Ye, Luting, 2023. "Analysis of construction area’s impacts on traffic flow: A case study on Hangzhou Bay Bridge in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    17. Hou, Guangyang & Chen, Suren & Bao, Yulong, 2022. "Development of travel time functions for disrupted urban arterials with microscopic traffic simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    18. Meng, Jian-ping & Dai, Shi-qiang & Dong, Li-yun & Zhang, Jie-fang, 2007. "Cellular automaton model for mixed traffic flow with motorcycles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 470-480.
    19. Shuang Jin & Jianxi Yang & Zhongcheng Liu, 2022. "Modeling and Analysis of Car-Following for Intelligent Connected Vehicles Considering Expected Speed in Helical Ramps," Sustainability, MDPI, vol. 14(24), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:401:y:2014:i:c:p:82-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.