IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v605y2022ics0378437122006409.html
   My bibliography  Save this article

Quantum harmonic oscillator model for fine-grained expressway traffic volume simulation considering individual heterogeneity

Author

Listed:
  • Hu, Xu
  • Li, Dongshuang
  • Yu, Zhaoyuan
  • Yan, Zhenjun
  • Luo, Wen
  • Yuan, Linwang

Abstract

Accurate and robust fine-grained expressway traffic volume simulation is a critical issue in intelligent transportation systems and real-time traffic-related applications. However, the fine-grained expressway traffic volumes aggregated from vehicle trajectories heavily rely on individual heterogeneity, making it challenging for modeling and accurate simulation. In order to eliminate the influence of individual heterogeneity on the modeling and simulation of the fine-grained expressway traffic volume, this paper proposes a novel method named Quantum Harmonic Oscillator Model for Fine-grained Expressway Traffic Volume Simulation (FGTVS-QHO). FGTVS-QHO adopts the wave function of the quantum harmonic oscillator model to describe the irregular evolution of the location of the vehicle. Then several optimization strategies are applied to the numerical solution of the wave function. FGTVS-QHO is validated with the expressway traffic volumes of six exits along the Nanjing-Shanghai Expressway in China. The simulation performance of FGTVS-QHO is compared with the methods of Long and Short-Term Memory (LSTM) networks and Autoregressive Integrated Moving Average (ARIMA). FGTVS-QHO shows higher simulation accuracy, less time cost, and lower parameter complexity. Especially, the average simulation accuracy of FGTVS-QHO is improved by 24.80% and 58.05% compared with the above two methods, respectively. The scale effects of FGTVS-QHO also indicate that it is adaptive to simulate the expressway traffic volume at fine time granularity. This paper provides a new potential method for fine-grained expressway traffic volume simulation with strong individual heterogeneity.

Suggested Citation

  • Hu, Xu & Li, Dongshuang & Yu, Zhaoyuan & Yan, Zhenjun & Luo, Wen & Yuan, Linwang, 2022. "Quantum harmonic oscillator model for fine-grained expressway traffic volume simulation considering individual heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
  • Handle: RePEc:eee:phsmap:v:605:y:2022:i:c:s0378437122006409
    DOI: 10.1016/j.physa.2022.128020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122006409
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheu, Jiuh-Biing & Wu, Hsi-Jen, 2015. "Driver perception uncertainty in perceived relative speed and reaction time in car following – A quantum optical flow perspective," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 257-274.
    2. Xiao, Jianli & Wang, Zhonghao, 2018. "Traffic speed cloud maps: A new method for analyzing macroscopic traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 367-375.
    3. Alireza Ermagun & David Levinson, 2018. "Spatiotemporal traffic forecasting: review and proposed directions," Transport Reviews, Taylor & Francis Journals, vol. 38(6), pages 786-814, November.
    4. Qu, Xiaobo & Zhang, Jin & Wang, Shuaian, 2017. "On the stochastic fundamental diagram for freeway traffic: Model development, analytical properties, validation, and extensive applications," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 256-271.
    5. A. M. Avila & I. Mezić, 2020. "Data-driven analysis and forecasting of highway traffic dynamics," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    6. Chen, Xinqiang & Chen, Huixing & Yang, Yongsheng & Wu, Huafeng & Zhang, Wenhui & Zhao, Jiansen & Xiong, Yong, 2021. "Traffic flow prediction by an ensemble framework with data denoising and deep learning model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    7. Yuan, Yun & Zhang, Zhao & Yang, Xianfeng Terry & Zhe, Shandian, 2021. "Macroscopic traffic flow modeling with physics regularized Gaussian process: A new insight into machine learning applications in transportation," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 88-110.
    8. Jia, Yanfeng & Qu, Dayi & Song, Hui & Wang, Tao & Zhao, Zixu, 2022. "Car-following characteristics and model of connected autonomous vehicles based on safe potential field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    9. (Sean) Qian, Zhen & Li, Jia & Li, Xiaopeng & Zhang, Michael & Wang, Haizhong, 2017. "Modeling heterogeneous traffic flow: A pragmatic approach," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 183-204.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Ruyang & Zheng, Nan & Liu, Zhiyuan, 2022. "Estimating fundamental diagram for multi-modal signalized urban links with limited probe data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    2. Cheng, Qixiu & Lin, Yuqian & Zhou, Xuesong (Simon) & Liu, Zhiyuan, 2024. "Analytical formulation for explaining the variations in traffic states: A fundamental diagram modeling perspective with stochastic parameters," European Journal of Operational Research, Elsevier, vol. 312(1), pages 182-197.
    3. Storm, Pieter Jacob & Mandjes, Michel & van Arem, Bart, 2022. "Efficient evaluation of stochastic traffic flow models using Gaussian process approximation," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 126-144.
    4. Shi, Xiaowei & Li, Xiaopeng, 2021. "Constructing a fundamental diagram for traffic flow with automated vehicles: Methodology and demonstration," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 279-292.
    5. Huo, Jinbiao & Liu, Chengqi & Chen, Jingxu & Meng, Qiang & Wang, Jian & Liu, Zhiyuan, 2023. "Simulation-based dynamic origin–destination matrix estimation on freeways: A Bayesian optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    6. Bai, Lu & Wong, S.C. & Xu, Pengpeng & Chow, Andy H.F. & Lam, William H.K., 2021. "Calibration of stochastic link-based fundamental diagram with explicit consideration of speed heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 524-539.
    7. Seo, Toru & Kawasaki, Yutaka & Kusakabe, Takahiko & Asakura, Yasuo, 2019. "Fundamental diagram estimation by using trajectories of probe vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 40-56.
    8. Yang, Hanyi & Du, Lili & Zhang, Guohui & Ma, Tianwei, 2023. "A Traffic Flow Dependency and Dynamics based Deep Learning Aided Approach for Network-Wide Traffic Speed Propagation Prediction," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 99-117.
    9. Nanyondo, Josephine & Kasumba, Henry, 2024. "Analysis of heterogeneous vehicular traffic: Using proportional densities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    10. Jinxiao Duan & Guanwen Zeng & Nimrod Serok & Daqing Li & Efrat Blumenfeld Lieberthal & Hai-Jun Huang & Shlomo Havlin, 2023. "Spatiotemporal dynamics of traffic bottlenecks yields an early signal of heavy congestions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Mohan, Ranju & Ramadurai, Gitakrishnan, 2021. "Multi-class traffic flow model based on three dimensional flow–concentration surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    12. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "A stochastic dynamic network loading model for mixed traffic with autonomous and human-driven vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    13. Qin, Yanyan & Liu, Mingxuan & Hao, Wei, 2024. "Energy-optimal car-following model for connected automated vehicles considering traffic flow stability," Energy, Elsevier, vol. 298(C).
    14. Gutierrez-Lythgoe, Antonio, 2023. "Movilidad urbana sostenible: Predicción de demanda con Inteligencia Artificial [Sustainable Urban Mobility: Demand Prediction with Artificial Intelligence]," MPRA Paper 117103, University Library of Munich, Germany.
    15. Shao, Feng & Shao, Hu & Wang, Dongle & Lam, William H.K., 2024. "A multi-task spatio-temporal generative adversarial network for prediction of travel time reliability in peak hour periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    16. Hang Shen & Lin Li & Haihong Zhu & Yu Liu & Zhenwei Luo, 2021. "Exploring a Pricing Model for Urban Rental Houses from a Geographical Perspective," Land, MDPI, vol. 11(1), pages 1-28, December.
    17. Wang, Shuliang & Chen, Chen & Zhang, Jianhua & Gu, Xifeng & Huang, Xiaodi, 2022. "Vulnerability assessment of urban road traffic systems based on traffic flow," International Journal of Critical Infrastructure Protection, Elsevier, vol. 38(C).
    18. Maiti, Nandan & Laval, Jorge A. & Chilukuri, Bhargava Rama, 2024. "Universality of area occupancy-based fundamental diagrams in mixed traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    19. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    20. Li, Jia & Chen, Di & Zhang, Michael, 2022. "Equilibrium modeling of mixed autonomy traffic flow based on game theory," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 110-127.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:605:y:2022:i:c:s0378437122006409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.