IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v635y2024ics0378437123010476.html
   My bibliography  Save this article

Demand forecasting of shared bicycles based on combined deep learning models

Author

Listed:
  • Ma, Changxi
  • Liu, Tao

Abstract

The combined deep learning model for bicycle sharing demand prediction is designed to solve the "last 1 km" problem. At present, there are many companies providing bicycle sharing services at home and abroad, and how to dispatch shared bicycles more efficiently has become an important issue in traffic information research. Sometimes it is difficult to find shared bikes at the exit of some subway stations, along commercial streets, or under some office buildings, while sometimes there are mountains of shared bikes. Therefore, performing demand prediction of shared bikes can efficiently increase the scheduling efficiency of shared bikes, optimize the distribution of shared bikes, and provide more convenient travel services for users. Based on traffic flow prediction theory, this paper studies the spatial and temporal features of shared bicycles. The results show that factors such as time of day, season, weather, and temperature have an effect on the demand for bicycles. Based on the above-mentioned characteristic influencing factors, a CNN-LSTM-Attention algorithm is proposed to forecast the demand for shared bicycles in this paper. Firstly, a CNN-LSTM-Attention model is constructed to predict the demand for bicycle sharing based on the open-source data provided by Capital Bicycle Company. Secondly, it is proved that CNN-LSTM-Attention model is better than 1DCNN-LSTM-Attention, CNN-LSTM, LSTM, SVR-based model and BP neural network model in the precision prediction of shared bicycles, in which the prediction accuracy reaches 97.50%, which confirms the practicality and effectiveness of the model.

Suggested Citation

  • Ma, Changxi & Liu, Tao, 2024. "Demand forecasting of shared bicycles based on combined deep learning models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
  • Handle: RePEc:eee:phsmap:v:635:y:2024:i:c:s0378437123010476
    DOI: 10.1016/j.physa.2023.129492
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123010476
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129492?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiageng, Niu & Lanlan, Zheng & Xianghong, Li, 2022. "A study on the trip behavior of shared bicycles and shared electric bikes in Chinese universities based on NL model—Henan Polytechnic University as an example," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    2. Chen, Kai & Song, Xiao & Han, Daolin & Sun, Jinghan & Cui, Yong & Ren, Xiaoxiang, 2020. "Pedestrian behavior prediction model with a convolutional LSTM encoder–decoder," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    3. Liao, Ziyi & Liu, Minghui & Du, Bowen & Zhou, Haijun & Li, Linchao, 2022. "A temporal and spatial prediction method for urban pipeline network based on deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
    4. Liu, Yanyan & Li, Keping & Yan, Dongyang & Gu, Shuang, 2022. "A network-based CNN model to identify the hidden information in text data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    5. Zhang, Yu & He, Yingying & Zhang, Likai, 2023. "Recognition method of abnormal driving behavior using the bidirectional gated recurrent unit and convolutional neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    6. Hu, Beibei & Zhong, Zhenfang & Zhang, Yanli & Sun, Yue & Jiang, Li & Dong, Xianlei & Sun, Huijun, 2022. "Understanding the influencing factors of bicycle-sharing demand based on residents’ trips," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    7. Duan, Yimeng & Zhang, Shen & Yu, Zhuoran, 2021. "Applying Bayesian spatio-temporal models to demand analysis of shared bicycle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    8. Wang, Ke & Ma, Changxi & Qiao, Yihuan & Lu, Xijin & Hao, Weining & Dong, Sheng, 2021. "A hybrid deep learning model with 1DCNN-LSTM-Attention networks for short-term traffic flow prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    9. Luo, Jie & Wen, Chao & Peng, Qiyuan & Qin, Yong & Huang, Ping, 2023. "Forecasting the effect of traffic control strategies in railway systems: A hybrid machine learning method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    10. Jie Bao & Chengcheng Xu & Pan Liu & Wei Wang, 2017. "Exploring Bikesharing Travel Patterns and Trip Purposes Using Smart Card Data and Online Point of Interests," Networks and Spatial Economics, Springer, vol. 17(4), pages 1231-1253, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hua, Mingzhuang & Chen, Xuewu & Chen, Jingxu & Huang, Di & Cheng, Long, 2022. "Large-scale dockless bike sharing repositioning considering future usage and workload balance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    2. Ma, Changxi & Zhao, Mingxi, 2023. "Spatio-temporal multi-graph convolutional network based on wavelet analysis for vehicle speed prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    3. Korbmacher, Raphael & Dang, Huu-Tu & Tordeux, Antoine, 2024. "Predicting pedestrian trajectories at different densities: A multi-criteria empirical analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    4. Bi, Hui & Ye, Zhirui & Hu, Liyang & Zhu, He, 2021. "Why they don't choose bus service? Understanding special online car-hailing behavior near bus stops," Transport Policy, Elsevier, vol. 114(C), pages 280-297.
    5. Kyoungok Kim, 2024. "Discovering spatiotemporal usage patterns of a bike-sharing system by type of pass: a case study from Seoul," Transportation, Springer, vol. 51(4), pages 1373-1407, August.
    6. Pan, Yingjiu & Chen, Shuyan & Niu, Shifeng & Ma, Yongfeng & Tang, Kun, 2020. "Investigating the impacts of built environment on traffic states incorporating spatial heterogeneity," Journal of Transport Geography, Elsevier, vol. 83(C).
    7. Li, Mengya & Kwan, Mei-Po & Wang, Fahui & Wang, Jun, 2018. "Using points-of-interest data to estimate commuting patterns in central Shanghai, China," Journal of Transport Geography, Elsevier, vol. 72(C), pages 201-210.
    8. Xiumei Tang & Yu Liu & Yuchun Pan, 2020. "An Evaluation and Region Division Method for Ecosystem Service Supply and Demand Based on Land Use and POI Data," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    9. Li, Tao & Liu, Xiangyu & Li, Guannan & Wang, Xing & Ma, Jiangqiaoyu & Xu, Chengliang & Mao, Qianjun, 2024. "A systematic review and comprehensive analysis of building occupancy prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    10. Hu, Guojing & Whalin, Robert W. & Kwembe, Tor A. & Lu, Weike, 2023. "Short-term traffic flow prediction based on secondary hybrid decomposition and deep echo state networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    11. Qing Yu & Weifeng Li & Dongyuan Yang & Yingkun Xie, 2020. "Policy Zoning for Efficient Land Utilization Based on Spatio-Temporal Integration between the Bicycle-Sharing Service and the Metro Transit," Sustainability, MDPI, vol. 13(1), pages 1-14, December.
    12. Kim, Kyoungok, 2023. "Investigation of modal integration of bike-sharing and public transit in Seoul for the holders of 365-day passes," Journal of Transport Geography, Elsevier, vol. 106(C).
    13. Yan Zheng & Chunjiao Dong & Daiyue Dong & Shengyou Wang, 2021. "Traffic Volume Prediction: A Fusion Deep Learning Model Considering Spatial–Temporal Correlation," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    14. Yan, Jie & Nuertayi, Akejiang & Yan, Yamin & Liu, Shan & Liu, Yongqian, 2023. "Hybrid physical and data driven modeling for dynamic operation characteristic simulation of wind turbine," Renewable Energy, Elsevier, vol. 215(C).
    15. Xing, Yingying & Wang, Ke & Lu, Jian John, 2020. "Exploring travel patterns and trip purposes of dockless bike-sharing by analyzing massive bike-sharing data in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 87(C).
    16. Zhang, Lei & Zhao, Xin & Zhu, Ge & He, Jun & Chen, Jian & Chen, Zhicheng & Traore, Seydou & Liu, Junguo & Singh, Vijay P., 2023. "Short-term daily reference evapotranspiration forecasting using temperature-based deep learning models in different climate zones in China," Agricultural Water Management, Elsevier, vol. 289(C).
    17. Zhao, Jiandong & Yu, Zhixin & Yang, Xin & Gao, Ziyou & Liu, Wenhui, 2022. "Short term traffic flow prediction of expressway service area based on STL-OMS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    18. Judith Y. T. Wang & Richard D. Connors, 2018. "Urban Growth, Transport Planning, Air Quality and Health: A Multi-Objective Spatial Analysis Framework for a Linear Monocentric City," Networks and Spatial Economics, Springer, vol. 18(4), pages 839-874, December.
    19. Zheng, Yan & Wang, Shengyou & Dong, Chunjiao & Li, Wenquan & Zheng, Wen & Yu, Jingcai, 2022. "Urban road traffic flow prediction: A graph convolutional network embedded with wavelet decomposition and attention mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    20. Liu, Longlong & Zhou, Suyu & Jie, Qian & Du, Pei & Xu, Yan & Wang, Jianzhou, 2024. "A robust time-varying weight combined model for crude oil price forecasting," Energy, Elsevier, vol. 299(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:635:y:2024:i:c:s0378437123010476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.