IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v604y2022ics0378437122005763.html
   My bibliography  Save this article

Developing a fuzzy-based decision-making procedure for traffic control in expressway congestion management

Author

Listed:
  • Toan, Trinh Dinh
  • Wong, Yiik Diew
  • Lam, Soi Hoi
  • Meng, Meng

Abstract

This paper presents part of a multi-stage fuzzy logic controller (MS-FLC) that is developed for traffic control in congestion management on expressways. The decision-making process of traffic control for expressway congestion management using the MS-FLC consists of three tasks: (1) evaluation of current traffic congestion; (2) prediction of traffic congestion tendency; and (3) recommendation of control strategies and control actions to alleviate the congestion. This paper presents the 3rd stage of the MS-FLC that develops a fuzzy-based decision-making procedure (FDMP) for management of recurring and non-recurring congestion. Using fuzzy rules, the FDMP evaluates the current and anticipated traffic data and incident information to recommend control strategies at the strategic level, and control actions at the operational level. Results from this research show that: (i) the FDMP offers a comprehensive procedure in deriving control strategies and actions; (ii) FDMP control actions are derived from a systematic decision-making logic where the design of control rules is consistently oriented toward achieving desirable control objectives; (iii) the FDMP targets a proper balance in congestion management between the mainline and the ramp using compromise rule design; (iv) the FDMP facilitates using various forms of available traffic and incident data on an extended expressway segment to derive at control actions, making the system-wide gains possible; and (v) the FDMP could be applied for management of both recurring and non-recurring congestion.

Suggested Citation

  • Toan, Trinh Dinh & Wong, Yiik Diew & Lam, Soi Hoi & Meng, Meng, 2022. "Developing a fuzzy-based decision-making procedure for traffic control in expressway congestion management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
  • Handle: RePEc:eee:phsmap:v:604:y:2022:i:c:s0378437122005763
    DOI: 10.1016/j.physa.2022.127899
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122005763
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127899?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Qingchao & Liu, Tao & Cai, Yingfeng & Xiong, Xiaoxia & Jiang, Haobin & Wang, Hai & Hu, Ziniu, 2021. "Explanatory prediction of traffic congestion propagation mode: A self-attention based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    2. Sheu, Jiuh-Biing, 2007. "Stochastic modeling of the dynamics of incident-induced lane traffic states for incident-responsive local ramp control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 365-380.
    3. Zhang, Michael & Kim, Taewan & Nie, Xiaojian & Jin, Wenlong & Chu, Lianyu & Recker, Will, 2001. "Evaluation of On-ramp Control Algorithms," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt83n4g2rq, Institute of Transportation Studies, UC Berkeley.
    4. Toan, Trinh Dinh & Wong, Y.D., 2021. "Fuzzy logic-based methodology for quantification of traffic congestion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    5. Jin, Wenlong & Zhang, Michael, 2001. "Evaluation of On-ramp Control Algorithms," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1gz7w0wm, Institute of Transportation Studies, UC Berkeley.
    6. Toan, Trinh Dinh & Lam, Soi Hoi & Wong, Yiik Diew & Meng, Meng, 2022. "Development and validation of a driving simulator for traffic control using field data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Ziliang & Wang, Ling & Su, Zicheng & Ma, Wanjing, 2024. "Integrating variable speed limit and ramp metering to enhance vehicle group safety and efficiency in a mixed traffic environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Michael & Ma, Jingtao, 2008. "Developing Calibration Tools for Microscopic Traffic Simulation Final Report Part 1: Overview Methods and Guidelines on Project Scoping and Data Collection," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3hh8f7nz, Institute of Transportation Studies, UC Berkeley.
    2. Kerner, Boris S., 2005. "Control of spatiotemporal congested traffic patterns at highway bottlenecks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(2), pages 565-601.
    3. Jacob, Celine & Abdulhai, Baher, 2010. "Machine learning for multi-jurisdictional optimal traffic corridor control," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(2), pages 53-64, February.
    4. Nima Dadashzadeh & Murat Ergun, 2019. "An Integrated Variable Speed Limit and ALINEA Ramp Metering Model in the Presence of High Bus Volume," Sustainability, MDPI, vol. 11(22), pages 1-26, November.
    5. Yuan, Naitong & Ma, Minghui & Liang, Shidong & Wang, Wenjie & Zhang, Hu, 2022. "Optimal control method of freeway based on tollbooths lane configuration and variable speed limit control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    6. Wu, Jiaxin & Zhou, Xubing & Peng, Yi & Zhao, Xiaojun, 2022. "Recurrence analysis of urban traffic congestion index on multi-scale," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    7. Chao Sun & Jian Lu, 2022. "The Relative Roles of Socioeconomic Factors and Governance Policies in Urban Traffic Congestion: A Global Perspective," Land, MDPI, vol. 11(10), pages 1-17, September.
    8. Wang, Chun & Zhang, Weihua & Wu, Cong & Hu, Heng & Ding, Heng & Zhu, Wenjia, 2022. "A traffic state recognition model based on feature map and deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    9. Yang, Yuwei & Li, Zhuoxuan & Chen, Jun & Liu, Zhiyuan & Cao, Jinde, 2024. "TRELM-DROP: An impavement non-iterative algorithm for traffic flow forecast," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    10. Wang, Ke & Ma, Changxi & Qiao, Yihuan & Lu, Xijin & Hao, Weining & Dong, Sheng, 2021. "A hybrid deep learning model with 1DCNN-LSTM-Attention networks for short-term traffic flow prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    11. Kun Sun & Tian-Fang Zhao & Xiao-Kun Wu & Kai-Sheng Lai & Wei-Neng Chen & Jin-Sheng Zhang, 2022. "Incorporating Fuzzy Cognitive Inference for Vaccine Hesitancy Measuring," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    12. Toan, Trinh Dinh & Lam, Soi Hoi & Wong, Yiik Diew & Meng, Meng, 2022. "Development and validation of a driving simulator for traffic control using field data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    13. Chen, Zhichao & Zheng, Changjiang & Tao, Tongtong & Wang, Yanyan, 2024. "Reliability analysis of urban road traffic network under targeted attack strategies considering traffic congestion diffusion," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    14. Xing, Zhuoqun & Pan, Yiqun & Yang, Yiting & Yuan, Xiaolei & Liang, Yumin & Huang, Zhizhong, 2024. "Transfer learning integrating similarity analysis for short-term and long-term building energy consumption prediction," Applied Energy, Elsevier, vol. 365(C).
    15. Shao, Zhen & Yang, Yudie & Zheng, Qingru & Zhou, Kaile & Liu, Chen & Yang, Shanlin, 2022. "A pattern classification methodology for interval forecasts of short-term electricity prices based on hybrid deep neural networks: A comparative analysis," Applied Energy, Elsevier, vol. 327(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:604:y:2022:i:c:s0378437122005763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.