IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v5y1998i3-4p181-205.html
   My bibliography  Save this article

The predictive power of price patterns

Author

Listed:
  • G. Caginalp
  • H. Laurent

Abstract

Using two sets of data, including daily prices (open, close, high and low) of all S&P 500 stocks between 1992 and 1996, we perform a satistical test of the predictive capability of candlestick patterns. Out-of-sample tests indicate statistical significance at the level of 36 standard deviations from the null hypothesis, and indicate a profit of almost 1% during a two-day holding period. An essentially non-parametric test utilizes standard definitions of three-day candlestick patterns and removes conditions on magnitudes. The results provide evidence that traders are influenced by price behaviour. To the best of our knowledge, this is the first scientific test to provide strong evidence in favour of any trading rule or pattern on a large unrestricted scale.

Suggested Citation

  • G. Caginalp & H. Laurent, 1998. "The predictive power of price patterns," Applied Mathematical Finance, Taylor & Francis Journals, vol. 5(3-4), pages 181-205.
  • Handle: RePEc:taf:apmtfi:v:5:y:1998:i:3-4:p:181-205
    DOI: 10.1080/135048698334637
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/135048698334637
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/135048698334637?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    2. Shiller, Robert J, 1981. "The Use of Volatility Measures in Assessing Market Efficiency," Journal of Finance, American Finance Association, vol. 36(2), pages 291-304, May.
    3. Rosenthal, Robert W., 1981. "Games of perfect information, predatory pricing and the chain-store paradox," Journal of Economic Theory, Elsevier, vol. 25(1), pages 92-100, August.
    4. T. Randolph Beard & Richard O. Beil, 1994. "Do People Rely on the Self-Interested Maximization of Others? An Experimental Test," Management Science, INFORMS, vol. 40(2), pages 252-262, February.
    5. Blume, Lawrence & Easley, David & O'Hara, Maureen, 1994. "Market Statistics and Technical Analysis: The Role of Volume," Journal of Finance, American Finance Association, vol. 49(1), pages 153-181, March.
    6. David Porter & Vernon Smith, 1994. "Stock market bubbles in the laboratory," Applied Mathematical Finance, Taylor & Francis Journals, vol. 1(2), pages 111-128.
    7. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Tsung-Hsun & Chen, Yi-Chi & Hsu, Yu-Chin, 2015. "Trend definition or holding strategy: What determines the profitability of candlestick charting?," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 172-183.
    2. Gil Cohen, 2022. "Artificial Intelligence in Trading the Financial Markets," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(1), pages 101-110.
    3. Gil Cohen, 2021. "Optimizing candlesticks patterns for Bitcoin's trading systems," Review of Quantitative Finance and Accounting, Springer, vol. 57(3), pages 1155-1167, October.
    4. Chiang, Mi-Hsiu & Chiu, Hsin-Yu & Kuo, Wei-Yu, 2021. "Predictive ability of similarity-based futures trading strategies," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    5. Lu, Tsung-Hsun, 2014. "The profitability of candlestick charting in the Taiwan stock market," Pacific-Basin Finance Journal, Elsevier, vol. 26(C), pages 65-78.
    6. Shangkun Deng & Zhihao Su & Yanmei Ren & Haoran Yu & Yingke Zhu & Chenyang Wei, 2022. "Can Japanese Candlestick Patterns be Profitable on the Component Stocks of the SSE50 Index?," SAGE Open, , vol. 12(3), pages 21582440221, August.
    7. Tsung‐Hsun Lu & Yung‐Ming Shiu & Tsung‐Chi Liu, 2012. "Profitable candlestick trading strategies—The evidence from a new perspective," Review of Financial Economics, John Wiley & Sons, vol. 21(2), pages 63-68, April.
    8. Ahmet Duran & Michael Bommarito, 2011. "A profitable trading and risk management strategy despite transaction costs," Quantitative Finance, Taylor & Francis Journals, vol. 11(6), pages 829-848.
    9. Osama El Ansary & Mona Atuea, 2017. "Testing the Effect of Technical Analysis Strategies on Achieving Abnormal Return: Evidence from Egyptian Stock Market," Accounting and Finance Research, Sciedu Press, vol. 6(2), pages 1-26, May.
    10. Piyapas Tharavanij & Vasan Siraprapasiri & Kittichai Rajchamaha, 2017. "Profitability of Candlestick Charting Patterns in the Stock Exchange of Thailand," SAGE Open, , vol. 7(4), pages 21582440177, October.
    11. Horton, Marshall J., 2009. "Stars, crows, and doji: The use of candlesticks in stock selection," The Quarterly Review of Economics and Finance, Elsevier, vol. 49(2), pages 283-294, May.
    12. Boainain, Pedro G. & Valls Pereira, Pedro L., 2009. "“Ombro-Cabeça-Ombro”: Testando a Lucratividade do Padrão Gráfico de Análise Técnica no Mercado de Ações Brasileiro [Head and Shoulder: testing the profitability of graphic pattern of technical anal," MPRA Paper 15653, University Library of Munich, Germany.
    13. Zhu, Min & Atri, Said & Yegen, Eyub, 2016. "Are candlestick trading strategies effective in certain stocks with distinct features?," Pacific-Basin Finance Journal, Elsevier, vol. 37(C), pages 116-127.
    14. Jessica James & Louis Yang, 2010. "Stop-losses, maximum drawdown-at-risk and replicating financial time series with the stationary bootstrap," Quantitative Finance, Taylor & Francis Journals, vol. 10(1), pages 1-12.
    15. Cheol‐Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    16. U, JuHyok & Lu, PengYu & Kim, ChungSong & Ryu, UnSok & Pak, KyongSok, 2020. "A new LSTM based reversal point prediction method using upward/downward reversal point feature sets," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    17. Tsung-Hsun Lu & Yung-Ming Shiu, 2016. "Can 1-day candlestick patterns be profitable on the 30 component stocks of the DJIA?," Applied Economics, Taylor & Francis Journals, vol. 48(35), pages 3345-3354, July.
    18. Lu, Tsung-Hsun & Shiu, Yung-Ming & Liu, Tsung-Chi, 2012. "Profitable candlestick trading strategies—The evidence from a new perspective," Review of Financial Economics, Elsevier, vol. 21(2), pages 63-68.
    19. Tsung-Hsun Lu & Yung-Ming Shiu, 2012. "Tests for Two-Day Candlestick Patterns in the Emerging Equity Market of Taiwan," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 48(0), pages 41-57, January.
    20. Yaohu Lin & Shancun Liu & Haijun Yang & Harris Wu & Bingbing Jiang, 2021. "Improving stock trading decisions based on pattern recognition using machine learning technology," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-25, August.
    21. Gil Cohen, 2020. "Best Candlesticks Pattern to Trade Stocks," International Journal of Economics and Financial Issues, Econjournals, vol. 10(2), pages 256-261.
    22. Shangkun Deng & Yingke Zhu & Xiaoru Huang & Shuangyang Duan & Zhe Fu, 2022. "High-Frequency Direction Forecasting of the Futures Market Using a Machine-Learning-Based Method," Future Internet, MDPI, vol. 14(6), pages 1-21, June.
    23. Huiwen Wang & Wenyang Huang & Shanshan Wang, 2021. "Forecasting open-high-low-close data contained in candlestick chart," Papers 2104.00581, arXiv.org.
    24. Fonseca, Carla L.G. & de Resende, Charlene C. & Fernandes, Danilo H.C. & Cardoso, Rodrigo T.N. & de Magalhães, A.R. Bosco, 2021. "Is the choice of the candlestick dimension relevant in econophysics?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    25. Chen, Shi & Bao, Si & Zhou, Yu, 2016. "The predictive power of Japanese candlestick charting in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 148-165.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1765, August.
    2. Md Lutfur Rahman & Mahbub Khan & Samuel A. Vigne & Gazi Salah Uddin, 2021. "Equity return predictability, its determinants, and profitable trading strategies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 162-186, January.
    3. John Y. Campbell & Sanford J. Grossman & Jiang Wang, 1993. "Trading Volume and Serial Correlation in Stock Returns," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(4), pages 905-939.
    4. Zhu, Yingzi & Zhou, Guofu, 2009. "Technical analysis: An asset allocation perspective on the use of moving averages," Journal of Financial Economics, Elsevier, vol. 92(3), pages 519-544, June.
    5. Yochanan Shachmurove & Uri BenZion & Paul Klein & Joseph Yagil, 2001. "A Moving Average Comparison of the Tel-Aviv 25 and S&P 500 Stock Indices," Penn CARESS Working Papers 4731f3394c43bebf4d3191c81, Penn Economics Department.
    6. G. Caginalp & D. Balenovich, 1994. "Market oscillations induced by the competition between value-based and trend-based investment strategies," Applied Mathematical Finance, Taylor & Francis Journals, vol. 1(2), pages 129-164.
    7. Tsung-Hsun Lu & Yung-Ming Shiu, 2016. "Can 1-day candlestick patterns be profitable on the 30 component stocks of the DJIA?," Applied Economics, Taylor & Francis Journals, vol. 48(35), pages 3345-3354, July.
    8. Qing Zhou & Robert Faff, 2017. "The complementary role of cross-sectional and time-series information in forecasting stock returns," Australian Journal of Management, Australian School of Business, vol. 42(1), pages 113-139, February.
    9. John Hatgioannides & Spiros Mesomeris, 2005. "Mean Reversion in Equity Prices: the G-7 Evidence," Money Macro and Finance (MMF) Research Group Conference 2005 64, Money Macro and Finance Research Group.
    10. Yehong Liu & Guosheng Yin, 2018. "Average Holding Price," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(01), pages 1-20, March.
    11. Janice How & Martin Ling & Peter Verhoeven, 2010. "Does size matter? A genetic programming approach to technical trading," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 131-140.
    12. Goodhart, Charles A. E. & O'Hara, Maureen, 1997. "High frequency data in financial markets: Issues and applications," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 73-114, June.
    13. Jiang, Yonghong & Nie, He & Ruan, Weihua, 2018. "Time-varying long-term memory in Bitcoin market," Finance Research Letters, Elsevier, vol. 25(C), pages 280-284.
    14. Ghada A. Altarawneh & Ahmad B. Hassanat & Ahmad S. Tarawneh & Ahmad Abadleh & Malek Alrashidi & Mansoor Alghamdi, 2022. "Stock Price Forecasting for Jordan Insurance Companies Amid the COVID-19 Pandemic Utilizing Off-the-Shelf Technical Analysis Methods," Economies, MDPI, vol. 10(2), pages 1-18, February.
    15. Gagnon, Louis & Karolyi, G. Andrew, 2009. "Information, Trading Volume, and International Stock Return Comovements: Evidence from Cross-Listed Stocks," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(4), pages 953-986, August.
    16. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
    17. Bariviera, Aurelio F. & Font-Ferrer, Alejandro & Sorrosal-Forradellas, M. Teresa & Rosso, Osvaldo A., 2019. "An information theory perspective on the informational efficiency of gold price," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    18. Nicolas Jacquemet & Adam Zylbersztejn, 2014. "What drives failure to maximize payoffs in the lab? A test of the inequality aversion hypothesis," Review of Economic Design, Springer;Society for Economic Design, vol. 18(4), pages 243-264, December.
    19. Trifan, Emanuela, 2004. "Entscheidungsregeln und ihr Einfluss auf den Aktienkurs," Darmstadt Discussion Papers in Economics 131, Darmstadt University of Technology, Department of Law and Economics.
    20. Yeh, Chia-Hsuan & Yang, Chun-Yi, 2010. "Examining the effectiveness of price limits in an artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 2089-2108, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:5:y:1998:i:3-4:p:181-205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.