IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v439y2015icp103-113.html
   My bibliography  Save this article

Does the singular value decomposition entropy have predictive power for stock market? — Evidence from the Shenzhen stock market

Author

Listed:
  • Gu, Rongbao
  • Xiong, Wei
  • Li, Xinjie

Abstract

This paper analyzes the predictive ability of the singular value decomposition entropy for the Shenzhen Component Index based on different scales. It is found that, the predictive ability of the entropy for the index is affected by the width of moving time windows and the structural break in stock market. By moving time windows with one year, the predictive power of singular value decomposition entropy of Shenzhen stock market for its component index is found after the reform of non-tradable shares.

Suggested Citation

  • Gu, Rongbao & Xiong, Wei & Li, Xinjie, 2015. "Does the singular value decomposition entropy have predictive power for stock market? — Evidence from the Shenzhen stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 439(C), pages 103-113.
  • Handle: RePEc:eee:phsmap:v:439:y:2015:i:c:p:103-113
    DOI: 10.1016/j.physa.2015.07.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711500638X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.07.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Jae Woo & Eun Lee, Kyoung & Arne Rikvold, Per, 2006. "Multifractal behavior of the Korean stock-market index KOSPI," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 355-361.
    2. Grech, D & Mazur, Z, 2004. "Can one make any crash prediction in finance using the local Hurst exponent idea?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 133-145.
    3. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    4. Ritesh Kumar Mishra & Sanjay Sehgal & N.R. Bhanumurthy, 2011. "A search for long‐range dependence and chaotic structure in Indian stock market," Review of Financial Economics, John Wiley & Sons, vol. 20(2), pages 96-104, May.
    5. Alvarez-Ramirez, Jose & Rodriguez, Eduardo & Alvarez, Jesus, 2012. "A multiscale entropy approach for market efficiency," International Review of Financial Analysis, Elsevier, vol. 21(C), pages 64-69.
    6. L. Zunino & B. M. Tabak & D. G. Pérez & M. Garavaglia & O. A. Rosso, 2007. "Inefficiency in Latin-American market indices," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 60(1), pages 111-121, November.
    7. Zhuang, Xiaoyang & Wei, Yu & Ma, Feng, 2015. "Multifractality, efficiency analysis of Chinese stock market and its cross-correlation with WTI crude oil price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 101-113.
    8. Lin, Xiaoqiang & Fei, Fangyu & Wang, Yudong, 2011. "Analysis of the efficiency of the Shanghai stock market: A volatility perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3486-3495.
    9. Cajueiro, Daniel O. & Tabak, Benjamin M., 2009. "Multifractality and herding behavior in the Japanese stock market," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 497-504.
    10. Toda, Hiro Y. & Yamamoto, Taku, 1995. "Statistical inference in vector autoregressions with possibly integrated processes," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 225-250.
    11. Caraiani, Petre, 2014. "The predictive power of singular value decomposition entropy for stock market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 571-578.
    12. Matilla-García, Mariano & Marín, Manuel Ruiz & Dore, Mohammed I., 2014. "A permutation entropy based test for causality: The volume–stock price relation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 280-288.
    13. Yuan, Ying & Zhuang, Xin-tian & Jin, Xiu, 2009. "Measuring multifractality of stock price fluctuation using multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(11), pages 2189-2197.
    14. Cajueiro, Daniel O. & Tabak, Benjamin M., 2006. "Testing for predictability in equity returns for European transition markets," Economic Systems, Elsevier, vol. 30(1), pages 56-78, March.
    15. Lee, Kyoung Eun & Lee, Jae Woo, 2007. "Probability distribution function and multiscaling properties in the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 65-70.
    16. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    17. Risso, Wiston Adrián, 2008. "The informational efficiency and the financial crashes," Research in International Business and Finance, Elsevier, vol. 22(3), pages 396-408, September.
    18. Sun, Xia & Chen, Huiping & Yuan, Yongzhuang & Wu, Ziqin, 2001. "Predictability of multifractal analysis of Hang Seng stock index in Hong Kong," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 301(1), pages 473-482.
    19. Onali, Enrico & Goddard, John, 2009. "Unifractality and multifractality in the Italian stock market," International Review of Financial Analysis, Elsevier, vol. 18(4), pages 154-163, September.
    20. Gregory, Allan W. & Hansen, Bruce E., 1996. "Residual-based tests for cointegration in models with regime shifts," Journal of Econometrics, Elsevier, vol. 70(1), pages 99-126, January.
    21. Cajueiro, Daniel O. & Tabak, Benjamin M., 2005. "Testing for time-varying long-range dependence in volatility for emerging markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(3), pages 577-588.
    22. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    23. Dror Y Kenett & Matthias Raddant & Thomas Lux & Eshel Ben-Jacob, 2012. "Evolvement of Uniformity and Volatility in the Stressed Global Financial Village," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
    24. Grau-Carles, Pilar, 2001. "Long-range power-law correlations in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(3), pages 521-527.
    25. Limam Imed, 2003. "Is Long Memory a Property of Thin Stock Markets? International Evidence Using Arab Countries," Review of Middle East Economics and Finance, De Gruyter, vol. 1(3), pages 56-71, December.
    26. Olan Henry, 2002. "Long memory in stock returns: some international evidence," Applied Financial Economics, Taylor & Francis Journals, vol. 12(10), pages 725-729.
    27. Wang, Yudong & Liu, Li & Gu, Rongbao & Cao, Jianjun & Wang, Haiyan, 2010. "Analysis of market efficiency for the Shanghai stock market over time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1635-1642.
    28. Thomas Lagoarde-Segot & Brian M. Lucey, 2008. "The Capital Markets of the Middle East and North African Region: Situation and Characteristics," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 44(5), pages 68-81, September.
    29. Alvarez-Ramirez, Jose & Rodriguez, Eduardo & Espinosa-Paredes, Gilberto, 2012. "Is the US stock market becoming weakly efficient over time? Evidence from 80-year-long data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5643-5647.
    30. Keith Jefferis & Graham Smith, 2005. "The Changing Efficiency Of African Stock Markets," South African Journal of Economics, Economic Society of South Africa, vol. 73(1), pages 54-67, March.
    31. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    32. Rizvi, Syed Aun R. & Dewandaru, Ginanjar & Bacha, Obiyathulla I. & Masih, Mansur, 2014. "An analysis of stock market efficiency: Developed vs Islamic stock markets using MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 86-99.
    33. Lim, Kian-Ping, 2007. "Ranking market efficiency for stock markets: A nonlinear perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 445-454.
    34. Zunino, Luciano & Figliola, Alejandra & Tabak, Benjamin M. & Pérez, Darío G. & Garavaglia, Mario & Rosso, Osvaldo A., 2009. "Multifractal structure in Latin-American market indices," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2331-2340.
    35. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2009. "Forbidden patterns, permutation entropy and stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2854-2864.
    36. Kim, Jae H. & Shamsuddin, Abul, 2008. "Are Asian stock markets efficient? Evidence from new multiple variance ratio tests," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 518-532, June.
    37. Gu, Rongbao & Shao, Yanmin & Wang, Qingnan, 2013. "Is the efficiency of stock market correlated with multifractality? An evidence from the Shanghai stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(2), pages 361-370.
    38. Horta, Paulo & Lagoa, Sérgio & Martins, Luís, 2014. "The impact of the 2008 and 2010 financial crises on the Hurst exponents of international stock markets: Implications for efficiency and contagion," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 140-153.
    39. Eom, Cheoljun & Choi, Sunghoon & Oh, Gabjin & Jung, Woo-Sung, 2008. "Hurst exponent and prediction based on weak-form efficient market hypothesis of stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(18), pages 4630-4636.
    40. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    41. Sun, Xia & Chen, Huiping & Wu, Ziqin & Yuan, Yongzhuang, 2001. "Multifractal analysis of Hang Seng index in Hong Kong stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 291(1), pages 553-562.
    42. Cajueiro, Daniel O. & Tabak, Benjamin M. & Souza, Nathalia A., 2005. "Periodic market closures and the long-range dependence phenomena in the Brazilian equity market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 351(2), pages 512-522.
    43. Cajueiro, Daniel O & Tabak, Benjamin M, 2004. "The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 521-537.
    44. Bolgorian, Meysam & Raei, Reza, 2011. "A multifractal detrended fluctuation analysis of trading behavior of individual and institutional traders in Tehran stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3815-3825.
    45. Dong-Ming Song & Michele Tumminello & Wei-Xing Zhou & Rosario N. Mantegna, 2011. "Evolution of worldwide stock markets, correlation structure and correlation based graphs," Papers 1103.5555, arXiv.org.
    46. Zhou, Weijie & Dang, Yaoguo & Gu, Rongbao, 2013. "Efficiency and multifractality analysis of CSI 300 based on multifractal detrending moving average algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1429-1438.
    47. Hiemstra, Craig & Jones, Jonathan D., 1997. "Another look at long memory in common stock returns," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 373-401, December.
    48. Maasoumi, Esfandiar & Racine, Jeff, 2002. "Entropy and predictability of stock market returns," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 291-312, March.
    49. Gregory, Allan W & Hansen, Bruce E, 1996. "Tests for Cointegration in Models with Regime and Trend Shifts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 58(3), pages 555-560, August.
    50. Costa, Rogério L. & Vasconcelos, G.L., 2003. "Long-range correlations and nonstationarity in the Brazilian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(1), pages 231-248.
    51. R. L. Costa & G. L. Vasconcelos, 2003. "Long-range correlations and nonstationarity in the Brazilian stock market," Papers cond-mat/0302342, arXiv.org.
    52. Skjeltorp, Johannes A, 2000. "Scaling in the Norwegian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(3), pages 486-528.
    53. Liu, Li & Wang, Yudong & Wan, Jieqiu, 2010. "Analysis of efficiency for Shenzhen stock market: Evidence from the source of multifractality," International Review of Financial Analysis, Elsevier, vol. 19(4), pages 237-241, September.
    54. Dror Y Kenett & Yoash Shapira & Asaf Madi & Sharron Bransburg-Zabary & Gitit Gur-Gershgoren & Eshel Ben-Jacob, 2011. "Index Cohesive Force Analysis Reveals That the US Market Became Prone to Systemic Collapses Since 2002," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-8, April.
    55. Cajueiro, Daniel O. & Tabak, Benjamin M., 2004. "Evidence of long range dependence in Asian equity markets: the role of liquidity and market restrictions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(3), pages 656-664.
    56. Lagoarde-Segot, Thomas & Lucey, Brian M., 2008. "Efficiency in emerging markets--Evidence from the MENA region," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 18(1), pages 94-105, February.
    57. Zunino, L. & Tabak, B.M. & Figliola, A. & Pérez, D.G. & Garavaglia, M. & Rosso, O.A., 2008. "A multifractal approach for stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6558-6566.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alvarez-Ramirez, Jose & Rodriguez, Eduardo, 2021. "A singular value decomposition entropy approach for testing stock market efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    2. Jiang, Jiaqi & Gu, Rongbao, 2016. "Using Rényi parameter to improve the predictive power of singular value decomposition entropy on stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 254-264.
    3. Gu, Rongbao & Shao, Yanmin, 2016. "How long the singular value decomposed entropy predicts the stock market? — Evidence from the Dow Jones Industrial Average Index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 150-161.
    4. Busu, Cristian & Busu, Mihail, 2019. "Modeling the predictive power of the singular value decomposition-based entropy. Empirical evidence from the Dow Jones Global Titans 50 Index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    5. Yan, Ruzhen & Yue, Ding & Chen, Xudong & Wu, Xu, 2020. "Non-linear characterization and trend identification of liquidity in China's new OTC stock market based on multifractal detrended fluctuation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. Heiberger, Raphael H., 2018. "Predicting economic growth with stock networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 102-111.
    7. Yang, Liansheng & Zhu, Yingming & Wang, Yudong & Wang, Yiqi, 2016. "Multifractal detrended cross-correlations between crude oil market and Chinese ten sector stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 255-265.
    8. Jiaming Liu & Chong Wu & Yongli Li, 2019. "Improving Financial Distress Prediction Using Financial Network-Based Information and GA-Based Gradient Boosting Method," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 851-872, February.
    9. Caraiani, Petre, 2017. "The predictive power of local properties of financial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 79-90.
    10. Civitarese, Jamil, 2016. "Volatility and correlation-based systemic risk measures in the US market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 55-67.
    11. Ruzhen Yan & Ding Yue & Xu Wu & Wei Gao, 2023. "Multiscale Multifractal Detrended Fluctuation Analysis and Trend Identification of Liquidity in the China's Stock Markets," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 487-511, February.
    12. Yang, Liansheng & Zhu, Yingming & Wang, Yudong, 2016. "Multifractal characterization of energy stocks in China: A multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 357-365.
    13. Espinosa-Paredes, G. & Rodriguez, E. & Alvarez-Ramirez, J., 2022. "A singular value decomposition entropy approach to assess the impact of Covid-19 on the informational efficiency of the WTI crude oil market," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    14. Chen, Shi & Bao, Si & Zhou, Yu, 2016. "The predictive power of Japanese candlestick charting in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 148-165.
    15. Gu, Rongbao, 2017. "Multiscale Shannon entropy and its application in the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 215-224.
    16. Lahmiri, Salim, 2017. "Cointegration and causal linkages in fertilizer markets across different regimes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 181-189.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alvarez-Ramirez, Jose & Rodriguez, Eduardo, 2021. "A singular value decomposition entropy approach for testing stock market efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    2. Zunino, Luciano & Bariviera, Aurelio F. & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2016. "Monitoring the informational efficiency of European corporate bond markets with dynamical permutation min-entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 1-9.
    3. Lee, Minhyuk & Song, Jae Wook & Kim, Sondo & Chang, Woojin, 2018. "Asymmetric market efficiency using the index-based asymmetric-MFDFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1278-1294.
    4. Akash P. POOJARI & Siva Kiran GUPTHA & G Raghavender RAJU, 2022. "Multifractal analysis of equities. Evidence from the emerging and frontier banking sectors," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(3(632), A), pages 61-80, Autumn.
    5. Choi, Sun-Yong, 2021. "Analysis of stock market efficiency during crisis periods in the US stock market: Differences between the global financial crisis and COVID-19 pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    6. Sensoy, Ahmet & Tabak, Benjamin M., 2015. "Time-varying long term memory in the European Union stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 147-158.
    7. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    8. Vogl, Markus, 2023. "Hurst exponent dynamics of S&P 500 returns: Implications for market efficiency, long memory, multifractality and financial crises predictability by application of a nonlinear dynamics analysis framewo," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    9. Sensoy, Ahmet & Tabak, Benjamin M., 2016. "Dynamic efficiency of stock markets and exchange rates," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 353-371.
    10. Stosic, Dusan & Stosic, Darko & de Mattos Neto, Paulo S.G. & Stosic, Tatijana, 2019. "Multifractal characterization of Brazilian market sectors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 956-964.
    11. Busu, Cristian & Busu, Mihail, 2019. "Modeling the predictive power of the singular value decomposition-based entropy. Empirical evidence from the Dow Jones Global Titans 50 Index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    12. Sukpitak, Jessada & Hengpunya, Varagorn, 2016. "The influence of trading volume on market efficiency: The DCCA approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 259-265.
    13. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2009. "Forbidden patterns, permutation entropy and stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2854-2864.
    14. Auer, Benjamin R., 2016. "On time-varying predictability of emerging stock market returns," Emerging Markets Review, Elsevier, vol. 27(C), pages 1-13.
    15. Asif, Raheel & Frömmel, Michael, 2022. "Testing Long memory in exchange rates and its implications for the adaptive market hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    16. Wang, Qizhen & Zhu, Yingming & Yang, Liansheng & Mul, Remco A.H., 2017. "Coupling detrended fluctuation analysis of Asian stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 337-350.
    17. Jiang, Jiaqi & Gu, Rongbao, 2016. "Using Rényi parameter to improve the predictive power of singular value decomposition entropy on stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 254-264.
    18. Hull, Matthew & McGroarty, Frank, 2014. "Do emerging markets become more efficient as they develop? Long memory persistence in equity indices," Emerging Markets Review, Elsevier, vol. 18(C), pages 45-61.
    19. Ma, Pengcheng & Li, Daye & Li, Shuo, 2016. "Efficiency and cross-correlation in equity market during global financial crisis: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 163-176.
    20. Shahzad, Syed Jawad Hussain & Hernandez, Jose Areola & Hanif, Waqas & Kayani, Ghulam Mujtaba, 2018. "Intraday return inefficiency and long memory in the volatilities of forex markets and the role of trading volume," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 433-450.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:439:y:2015:i:c:p:103-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.