IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v581y2021ics0378437121004660.html
   My bibliography  Save this article

Impact of CAV platoon management on traffic flow considering degradation of control mode

Author

Listed:
  • Zhou, Linjie
  • Ruan, Tiancheng
  • Ma, Ke
  • Dong, Changyin
  • Wang, Hao

Abstract

As Connected and Automated Vehicles (CAVs) gradually occupy more market share, the mixed traffic flow composed of MVs and CAVs will exist for a long time. This paper mainly explores the impact of CAV platoon management and control mode degradation on the fundamental diagram, and further studies how they affect fuel consumption and pollutant emissions. First, in terms of platoon management, the mixed traffic flow configurations and distribution characteristics of four types of vehicles were proposed. Second, numerical analyses were conducted, and a fundamental diagram considering CAV platoons and degradation of the Cooperative Adaptive Cruise Control (CACC) system was proposed. To validate this fundamental diagram, the Intelligent Driver Model (IDM) and the Connected and Automated Vehicle (CAV) and CACC models proposed by the PATH lab were applied for simulations. Third, the influence of CAV platoons on the traffic environment was explored via micro simulations as well. Conclusions were drawn from the results of the simulations: The mixed traffic can obtain significant capacity gain due to the existence of CAV platoons, especially with high Market Penetration Rate (MPR). Moreover, capacity break-downs occurred in the diagram due to the adjustment of information flow topology, and the break-downs were more prominent with higher MPR. Additionally, CAV platoons can significantly reduce fuel consumption and emissions by 34.7% and 41.4% respectively. The first degradation raises fuel consumption and emissions by 44.5% and 60.1%, while the second one by 12.0% and 16.1%, with the initial vehicle speed set at 33 m/s and MPR set at 1.0. Finally, according to the sensitivity analysis, an optimal platoon size of 5 vehicles was suggested for CAV platoon management.

Suggested Citation

  • Zhou, Linjie & Ruan, Tiancheng & Ma, Ke & Dong, Changyin & Wang, Hao, 2021. "Impact of CAV platoon management on traffic flow considering degradation of control mode," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
  • Handle: RePEc:eee:phsmap:v:581:y:2021:i:c:s0378437121004660
    DOI: 10.1016/j.physa.2021.126193
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121004660
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126193?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yao, Zhihong & Xu, Taorang & Jiang, Yangsheng & Hu, Rong, 2021. "Linear stability analysis of heterogeneous traffic flow considering degradations of connected automated vehicles and reaction time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    2. Li, Xiaopeng & Peng, Fan & Ouyang, Yanfeng, 2010. "Measurement and estimation of traffic oscillation properties," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 1-14, January.
    3. Yao, Zhihong & Hu, Rong & Wang, Yi & Jiang, Yangsheng & Ran, Bin & Chen, Yanru, 2019. "Stability analysis and the fundamental diagram for mixed connected automated and human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    4. Nowakowski, Christopher & Shladover, Steven E & Lu, Xiao-Yun & Thompson, Deborah & Kailas, Aravind, 2015. "Cooperative Adaptive Cruise Control (CACC) for Truck Platooning: Operational Concept Alternatives," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7jf9n5wm, Institute of Transportation Studies, UC Berkeley.
    5. Li, Xiaopeng & Wang, Xin & Ouyang, Yanfeng, 2012. "Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 409-423.
    6. Bansal, Prateek & Kockelman, Kara M., 2017. "Forecasting Americans’ long-term adoption of connected and autonomous vehicle technologies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 49-63.
    7. Gong, Siyuan & Shen, Jinglai & Du, Lili, 2016. "Constrained optimization and distributed computation based car following control of a connected and autonomous vehicle platoon," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 314-334.
    8. Li, Xiaopeng & Cui, Jianxun & An, Shi & Parsafard, Mohsen, 2014. "Stop-and-go traffic analysis: Theoretical properties, environmental impacts and oscillation mitigation," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 319-339.
    9. Chang, Xin & Li, Haijian & Rong, Jian & Zhao, Xiaohua & Li, An’ran, 2020. "Analysis on traffic stability and capacity for mixed traffic flow with platoons of intelligent connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Junwei & Qian, Yongsheng & Wang, Wenhai & Xu, Dejie & Li, Haijun, 2023. "The impact of connected automated vehicles and platoons on the traffic safety and stability in complex heterogeneous traffic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    2. Dong, Jiakuan & Gao, Zhijun & Luo, Dongyu & Wang, Jiangfeng & Chen, Lei, 2024. "Impact of beyond-line-of-sight connectivity on the capacity and stability of mixed traffic flow: An analytical and numerical investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    3. Di, Yunran & Zhang, Weihua & Ding, Heng & Zheng, Xiaoyan & Ran, Bin, 2024. "Cooperative control of dynamic CAV dedicated lanes and vehicle active lane changing in expressway bottleneck areas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    4. Zhou, Zhi & Li, Linheng & Qu, Xu & Ran, Bin, 2023. "An autonomous platoon formation strategy to optimize CAV car-following stability under periodic disturbance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    5. Guo, Mengting & Bai, Yang & Li, Xia & Zhou, Wei & Wang, Chunyang & Ma, Xinwei & Gao, Huixin & Xiao, Yuewen, 2023. "Freeway capacity modeling and analysis for traffic mixed with human-driven and connected automated vehicles considering driver behavior characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    6. Qin, Yanyan & Xie, Lulu & Gong, Siyuan & Ding, Fan & Tang, Honghui, 2024. "An optimal lane configuration management scheme for a mixed traffic freeway with connected vehicle platoons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    7. Li, Haijian & Zhang, Junjie & Sun, Xiaoliang & Niu, Jun & Zhao, Xiaohua, 2022. "A survey of vehicle group behaviors simulation under a connected vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    8. Shi, Xiaoyu & Zhang, Jian & Jiang, Xia & Chen, Juan & Hao, Wei & Wang, Bo, 2024. "Learning eco-driving strategies from human driving trajectories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    9. Jiang, Yangsheng & Cong, Hongwei & Wang, Yi & Wu, Yunxia & Li, Hongwu & Yao, Zhihong, 2023. "A new control strategy of CAVs platoon for mitigating traffic oscillation in a two-lane highway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    10. Yao, Zhihong & Gu, Qiufan & Jiang, Yangsheng & Ran, Bin, 2022. "Fundamental diagram and stability of mixed traffic flow considering platoon size and intensity of connected automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    11. Li, Chao & Zhao, Xiaomei & Xie, Dongfan, 2022. "Steady-state performance and dynamic performance of heterogeneous platoons under a connected environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    12. Zheng, Shuai & Liu, Yugang & Fu, Kui & Li, Rongrong & Zhang, You & Yang, Hongtai, 2024. "Optimization of isolated intersection signal timing and trajectory planning under mixed traffic environment: The flexible catalysis of connected and automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    13. Chen, Shuiwang & Hu, Lu & Yao, Zhihong & Zhu, Juanxiu & Zhao, Bin & Jiang, Yangsheng, 2022. "Efficient and environmentally friendly operation of intermittent dedicated lanes for connected autonomous vehicles in mixed traffic environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Zhihong & Gu, Qiufan & Jiang, Yangsheng & Ran, Bin, 2022. "Fundamental diagram and stability of mixed traffic flow considering platoon size and intensity of connected automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    2. Luo, Ruifa & Gu, Qiufan & Xu, Taorang & Hao, Huijun & Yao, Zhihong, 2022. "Analysis of linear internal stability for mixed traffic flow of connected and automated vehicles considering multiple influencing factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    3. Li, Xiaopeng, 2022. "Trade-off between safety, mobility and stability in automated vehicle following control: An analytical method," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 1-18.
    4. Zhou, Yang & Ahn, Soyoung & Wang, Meng & Hoogendoorn, Serge, 2020. "Stabilizing mixed vehicular platoons with connected automated vehicles: An H-infinity approach," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 152-170.
    5. Ma, Ke & Wang, Hao & Ruan, Tiancheng, 2021. "Analysis of road capacity and pollutant emissions: Impacts of Connected and automated vehicle platoons on traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    6. Guo, Mengting & Bai, Yang & Li, Xia & Zhou, Wei & Wang, Chunyang & Ma, Xinwei & Gao, Huixin & Xiao, Yuewen, 2023. "Freeway capacity modeling and analysis for traffic mixed with human-driven and connected automated vehicles considering driver behavior characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    7. Yu Wang & Xiaopeng Li & Junfang Tian & Rui Jiang, 2020. "Stability Analysis of Stochastic Linear Car-Following Models," Transportation Science, INFORMS, vol. 54(1), pages 274-297, January.
    8. Vranken, Tim & Schreckenberg, Michael, 2022. "Modelling multi-lane heterogeneous traffic flow with human-driven, automated, and communicating automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    9. Li, Xiaopeng & Ghiasi, Amir & Xu, Zhigang & Qu, Xiaobo, 2018. "A piecewise trajectory optimization model for connected automated vehicles: Exact optimization algorithm and queue propagation analysis," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 429-456.
    10. Yao, Zhihong & Wang, Yi & Liu, Bo & Zhao, Bin & Jiang, Yangsheng, 2021. "Fuel consumption and transportation emissions evaluation of mixed traffic flow with connected automated vehicles and human-driven vehicles on expressway," Energy, Elsevier, vol. 230(C).
    11. Yao, Handong & Li, Qianwen & Li, Xiaopeng, 2020. "A study of relationships in traffic oscillation features based on field experiments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 339-355.
    12. Li, Li & Li, Xiaopeng, 2019. "Parsimonious trajectory design of connected automated traffic," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 1-21.
    13. Yao, Zhihong & Deng, Haowei & Chen, Zikang & He, Xiang & Ai, Yi & Wu, Yunxia, 2024. "Linear internal stability for mixed traffic flow of CAVs with different automation levels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    14. Cui, Ziyu & Wang, Xiaoning & Ci, Yusheng & Yang, Changyun & Yao, Jia, 2023. "Modeling and analysis of car-following models incorporating multiple lead vehicles and acceleration information in heterogeneous traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    15. Tian, Junfang & Jiang, Rui & Jia, Bin & Gao, Ziyou & Ma, Shoufeng, 2016. "Empirical analysis and simulation of the concave growth pattern of traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 338-354.
    16. Zhao, Shuaidong & Zhang, Kuilin, 2020. "A distributionally robust stochastic optimization-based model predictive control with distributionally robust chance constraints for cooperative adaptive cruise control under uncertain traffic conditi," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 144-178.
    17. Li, Chao & Zhao, Xiaomei & Xie, Dongfan, 2022. "Steady-state performance and dynamic performance of heterogeneous platoons under a connected environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    18. Vranken, Tim & Sliwa, Benjamin & Wietfeld, Christian & Schreckenberg, Michael, 2021. "Adapting a cellular automata model to describe heterogeneous traffic with human-driven, automated, and communicating automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    19. Yuan, Zijian & Wang, Tao & Zhang, Jing & Li, Shubin, 2022. "Influences of dynamic safe headway on car-following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    20. Zhou, Yang & Ahn, Soyoung, 2019. "Robust local and string stability for a decentralized car following control strategy for connected automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 175-196.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:581:y:2021:i:c:s0378437121004660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.