IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v94y2016icp314-334.html
   My bibliography  Save this article

Constrained optimization and distributed computation based car following control of a connected and autonomous vehicle platoon

Author

Listed:
  • Gong, Siyuan
  • Shen, Jinglai
  • Du, Lili

Abstract

Motivated by the advancement in connected and autonomous vehicle technologies, this paper develops a novel car-following control scheme for a platoon of connected and autonomous vehicles on a straight highway. The platoon is modeled as an interconnected multi-agent dynamical system subject to physical and safety constraints, and it uses the global information structure such that each vehicle shares information with all the other vehicles. A constrained optimization based control scheme is proposed to ensure an entire platoon’s transient traffic smoothness and asymptotic dynamic performance. By exploiting the solution properties of the underlying optimization problem and using primal-dual formulation, this paper develops dual based distributed algorithms to compute optimal solutions with proven convergence. Furthermore, the asymptotic stability of the unconstrained linear closed-loop system is established. These stability analysis results provide a principle to select penalty weights in the underlying optimization problem to achieve the desired closed-loop performance for both the transient and the asymptotic dynamics. Extensive numerical simulations are conducted to validate the efficiency of the proposed algorithms.

Suggested Citation

  • Gong, Siyuan & Shen, Jinglai & Du, Lili, 2016. "Constrained optimization and distributed computation based car following control of a connected and autonomous vehicle platoon," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 314-334.
  • Handle: RePEc:eee:transb:v:94:y:2016:i:c:p:314-334
    DOI: 10.1016/j.trb.2016.09.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261516303836
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2016.09.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Swaroop, D.v.a.h.g, 1997. "String Stability Of Interconnected Systems: An Application To Platooning In Automated Highway Systems," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt86z6h1b1, Institute of Transportation Studies, UC Berkeley.
    2. Shladover, Steven & VanderWerf, Joel & Miller, Mark A. & Kourjanskaia, Natalia & Krishnan, Hariharan, 2001. "Development and Performance Evaluation of AVCSS Deployment Sequences to Advance from Today's Driving Environment to Full Automation," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt33w2d55j, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vincent A.C. van den Berg & Erik T. Verhoef, 2015. "Robot Cars and Dynamic Bottleneck Congestion: The Effects on Capacity, Value of Time and Preference Heterogeneity," Tinbergen Institute Discussion Papers 15-062/VIII, Tinbergen Institute, revised 11 Jul 2016.
    2. Li, Xiaopeng, 2022. "Trade-off between safety, mobility and stability in automated vehicle following control: An analytical method," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 1-18.
    3. Nowakowski, Christopher & Shladover, Steven E. & Cody, Delphine & Bu, Fanping & O’Connell, Jessica & Spring, John & Dickey, Susan & Nelson, David, 2011. "Cooperative Adaptive Cruise Control: Testing Drivers’ Choices of Following Distances," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8n7871x0, Institute of Transportation Studies, UC Berkeley.
    4. Nowakowski, Christopher & Shladover, Steven E. & Cody, Delphine & Bu, Fanping & O’Connell, Jessica & Spring, John & Dickey, Susan & Nelson, David, 2010. "Cooperative Adaptive Cruise Control: Testing Drivers’ Choices of Following Distances," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt58s2t0k3, Institute of Transportation Studies, UC Berkeley.
    5. Shladover, Steven E. & Nowakowski, Christopher & Cody, Delphine & Bu, Fanping & O’Connell, Jessica & Spring, John & Dickey, Susan & Nelson, David, 2009. "Effects of Cooperative Adaptive Cruise Control on Traffic Flow: Testing Drivers' Choices of Following Distances," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0sm5632n, Institute of Transportation Studies, UC Berkeley.
    6. Sun, Jie & Zheng, Zuduo & Sun, Jian, 2020. "The relationship between car following string instability and traffic oscillations in finite-sized platoons and its use in easing congestion via connected and automated vehicles with IDM based control," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 58-83.
    7. Talebpour, Alireza & Mahmassani, Hani S. & Hamdar, Samer H., 2018. "Effect of information availability on stability of traffic flow: Percolation theory approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 624-638.
    8. Sun, Jie & Zheng, Zuduo & Sun, Jian, 2018. "Stability analysis methods and their applicability to car-following models in conventional and connected environments," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 212-237.
    9. Ghiasi, Amir & Hussain, Omar & Qian, Zhen (Sean) & Li, Xiaopeng, 2017. "A mixed traffic capacity analysis and lane management model for connected automated vehicles: A Markov chain method," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 266-292.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:94:y:2016:i:c:p:314-334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.