Author
Listed:
- Li, Shihao
- Zhou, Bojian
- Wang, Ting
- Cheng, Cheng
- Xu, Min
Abstract
Automated vehicles (AVs) equipped with vehicle-to-vehicle (V2V) communication can operate by sensing real-time status information through onboard sensors and wireless connections. Nevertheless, under the influence of multifarious random factors in real traffic, this critical information that support the normal movement of such vehicles may be anomalous, raising concerns on their mobility and traffic security. Due to the lack of appropriate analytical model, previous studies have not comprehensively uncovered the effects of uncertain anomalous information on traffic flow of AVs with V2V communication. Therefore, this study aims to bridge this critical gap. Firstly, by introducing a probabilistic parameter (i.e., information anomaly probability), we propose a general model that integrates the normal and compromised models, thereby capturing the longitudinal dynamics of AVs featuring V2V communication in the presence of uncertain anomalous information. To enable the detailed theoretical and experimental analyses, we specify it through the cooperative adaptive cruise control model calibrated with real-car data. Subsequently, we define the concept of pseudo string stability and parameterize the stability condition based on the characteristic equation method, so as to demonstrate the relationship between traffic flow stability and the parameters and probability of information anomaly. Finally, we refine the proposed probabilistic model and conduct extensive numerical experiments. The findings show that uncertain anomalous information could result in sudden or even frequent acceleration and deceleration of AVs, causing traffic oscillation, reduced traffic efficiency, and even collision accidents. In particular, the greater the information anomaly probability, the larger the disturbances experienced by traffic flow. Meanwhile, at the same level of anomaly, the combined impacts of various anomalous information could lead to more severe consequences than the singular impact of any individual anomalous information. Furthermore, the duration of anomalous information directly affects the time it takes for traffic flow to return to normal.
Suggested Citation
Li, Shihao & Zhou, Bojian & Wang, Ting & Cheng, Cheng & Xu, Min, 2024.
"Effects of uncertain anomalous information on traffic flow of automated vehicles with V2V communication,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 653(C).
Handle:
RePEc:eee:phsmap:v:653:y:2024:i:c:s0378437124006162
DOI: 10.1016/j.physa.2024.130107
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:653:y:2024:i:c:s0378437124006162. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.