IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v653y2024ics0378437124006162.html
   My bibliography  Save this article

Effects of uncertain anomalous information on traffic flow of automated vehicles with V2V communication

Author

Listed:
  • Li, Shihao
  • Zhou, Bojian
  • Wang, Ting
  • Cheng, Cheng
  • Xu, Min

Abstract

Automated vehicles (AVs) equipped with vehicle-to-vehicle (V2V) communication can operate by sensing real-time status information through onboard sensors and wireless connections. Nevertheless, under the influence of multifarious random factors in real traffic, this critical information that support the normal movement of such vehicles may be anomalous, raising concerns on their mobility and traffic security. Due to the lack of appropriate analytical model, previous studies have not comprehensively uncovered the effects of uncertain anomalous information on traffic flow of AVs with V2V communication. Therefore, this study aims to bridge this critical gap. Firstly, by introducing a probabilistic parameter (i.e., information anomaly probability), we propose a general model that integrates the normal and compromised models, thereby capturing the longitudinal dynamics of AVs featuring V2V communication in the presence of uncertain anomalous information. To enable the detailed theoretical and experimental analyses, we specify it through the cooperative adaptive cruise control model calibrated with real-car data. Subsequently, we define the concept of pseudo string stability and parameterize the stability condition based on the characteristic equation method, so as to demonstrate the relationship between traffic flow stability and the parameters and probability of information anomaly. Finally, we refine the proposed probabilistic model and conduct extensive numerical experiments. The findings show that uncertain anomalous information could result in sudden or even frequent acceleration and deceleration of AVs, causing traffic oscillation, reduced traffic efficiency, and even collision accidents. In particular, the greater the information anomaly probability, the larger the disturbances experienced by traffic flow. Meanwhile, at the same level of anomaly, the combined impacts of various anomalous information could lead to more severe consequences than the singular impact of any individual anomalous information. Furthermore, the duration of anomalous information directly affects the time it takes for traffic flow to return to normal.

Suggested Citation

  • Li, Shihao & Zhou, Bojian & Wang, Ting & Cheng, Cheng & Xu, Min, 2024. "Effects of uncertain anomalous information on traffic flow of automated vehicles with V2V communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 653(C).
  • Handle: RePEc:eee:phsmap:v:653:y:2024:i:c:s0378437124006162
    DOI: 10.1016/j.physa.2024.130107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124006162
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xinke & Zhang, Jian & Li, Honghai & He, Zhengbing, 2023. "A mixed traffic car-following behavior model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    2. Zhou, Linjie & Ruan, Tiancheng & Ma, Ke & Dong, Changyin & Wang, Hao, 2021. "Impact of CAV platoon management on traffic flow considering degradation of control mode," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    3. Wen, Jianghui & Hong, Lijiang & Dai, Min & Xiao, Xinping & Wu, Chaozhong, 2023. "A stochastic model for stop-and-go phenomenon in traffic oscillation: On the prospective of macro and micro traffic flow," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    4. Sun, Jie & Zheng, Zuduo & Sun, Jian, 2018. "Stability analysis methods and their applicability to car-following models in conventional and connected environments," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 212-237.
    5. Cheng, Rongjun & Lyu, Hao & Zheng, Yaxing & Ge, Hongxia, 2022. "Modeling and stability analysis of cyberattack effects on heterogeneous intelligent traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    6. Bouadi, Marouane & Jia, Bin & Jiang, Rui & Li, Xingang & Gao, Zi-You, 2022. "Stochastic factors and string stability of traffic flow: Analytical investigation and numerical study based on car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 96-122.
    7. Luo, Ying & Chen, Yanyan & Lu, Kaiming & Chen, Liang & Zhang, Jian, 2024. "Modeling and analysis of heterogeneous traffic flow considering dynamic information flow topology and driving behavioral characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    8. Tian, Junfang & Zhu, Chenqiang & Chen, Danjue & Jiang, Rui & Wang, Guanying & Gao, Ziyou, 2021. "Car following behavioral stochasticity analysis and modeling: Perspective from wave travel time," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 160-176.
    9. Zhang, Geng & Sun, Di-Hua & Zhao, Min & Liao, Xiao-Yong & Liu, Wei-Ning & Zhou, Tong, 2018. "An extended car-following model accounting for cooperation driving system with velocity uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1008-1017.
    10. Sun, Dihua & Chen, Dong & Zhao, Min & Liu, Weining & Zheng, Linjiang, 2018. "Linear stability and nonlinear analyses of traffic waves for the general nonlinear car-following model with multi-time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 293-307.
    11. Ruan, Tiancheng & Zhou, Linjie & Wang, Hao, 2021. "Stability of heterogeneous traffic considering impacts of platoon management with multiple time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Jiakuan & Gao, Zhijun & Luo, Dongyu & Wang, Jiangfeng & Chen, Lei, 2024. "Impact of beyond-line-of-sight connectivity on the capacity and stability of mixed traffic flow: An analytical and numerical investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    2. Luo, Ying & Chen, Yanyan & Lu, Kaiming & Chen, Liang & Zhang, Jian, 2024. "Modeling and analysis of heterogeneous traffic flow considering dynamic information flow topology and driving behavioral characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    3. Li, Chao & Zhao, Xiaomei & Xie, Dongfan, 2022. "Steady-state performance and dynamic performance of heterogeneous platoons under a connected environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    4. Hou, Lin & Pei, Yulong & He, Qingling, 2023. "A car following model in the context of heterogeneous traffic flow involving multilane following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    5. Li, Haijian & Zhang, Junjie & Sun, Xiaoliang & Niu, Jun & Zhao, Xiaohua, 2022. "A survey of vehicle group behaviors simulation under a connected vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    6. Bouadi, Marouane & Jia, Bin & Jiang, Rui & Li, Xingang & Gao, Zi-You, 2022. "Stability analysis of stochastic second-order macroscopic continuum models and numerical simulations," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 193-209.
    7. Renjie Li & Yanyan Qin, 2024. "Car-Following Strategy Involving Stabilizing Traffic Flow with Connected Automated Vehicles to Reduce Particulate Matter (PM) Emissions in Rainy Weather," Sustainability, MDPI, vol. 16(5), pages 1-23, February.
    8. Li, Linheng & An, Bocheng & Wang, Zhiyu & Gan, Jing & Qu, Xu & Ran, Bin, 2024. "Stability analysis and numerical simulation of a car-following model considering safety potential field and V2X communication: A focus on influence weight of multiple vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    9. Yang, Yichen & Li, Zuxing & Li, Yabin & Cao, Tianyu & Li, Zhipeng, 2023. "Stability enhancement for traffic flow via self–stabilizing control strategy in the presence of packet loss," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    10. Li, Linheng & Wang, Can & Gan, Jing & Zhao, Yan & Qu, Xu & Ran, Bin, 2024. "Optimizing platoon safety through key node selection in pinning control strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    11. Bouadi, Marouane & Jia, Bin & Jiang, Rui & Li, Xingang & Gao, Zi-You, 2022. "Stochastic factors and string stability of traffic flow: Analytical investigation and numerical study based on car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 96-122.
    12. Zhang, Geng & Yin, Le & Pan, Dong-Bo & Zhang, Yu & Cui, Bo-Yuan & Jiang, Shan, 2020. "Research on multiple vehicles’ continuous self-delayed velocities on traffic flow with vehicle-to-vehicle communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    13. He, Z.C. & Kang, H. & Li, Eric & Zhou, E.L. & Cheng, H.T. & Huang, Y.Y., 2022. "Coordinated control of heterogeneous vehicle platoon stability and energy-saving control strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    14. Zeng, Junwei & Qian, Yongsheng & Wang, Wenhai & Xu, Dejie & Li, Haijun, 2023. "The impact of connected automated vehicles and platoons on the traffic safety and stability in complex heterogeneous traffic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    15. Mattas, K. & Albano, G. & Donà, R. & He, Y. & Ciuffo, B., 2023. "On the Relationship between Traffic Hysteresis and String Stability of Vehicle Platoons," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    16. Peng, Guanghan & Jia, Teti & Zhao, Hongzhuan & Tan, Huili, 2023. "Integrating the historical evolution information integral effect in car-following model under the V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
    17. Zhang, Futao & Qian, Yongsheng & Zeng, Junwei & Xu, Dejie & Li, Haijun, 2023. "Stability and safety analysis of mixed traffic flow considering network function degradation and platoon driving on the road with a slope," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    18. Zhou, Zhi & Li, Linheng & Qu, Xu & Ran, Bin, 2023. "An autonomous platoon formation strategy to optimize CAV car-following stability under periodic disturbance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    19. Li, Hui & Nie, Weige & Duan, Huiming, 2024. "A Haavelmo grey model based on economic growth and its application to energy industry investments," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    20. Meng, Dongli & Song, Guohua & Huang, Jianchang & Lu, Hongyu & Wu, Yizheng & Yu, Lei, 2024. "Car-following model considering jerk-constrained acceleration stochastic process for emission estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:653:y:2024:i:c:s0378437124006162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.