IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v630y2023ics0378437123008440.html
   My bibliography  Save this article

A new control strategy of CAVs platoon for mitigating traffic oscillation in a two-lane highway

Author

Listed:
  • Jiang, Yangsheng
  • Cong, Hongwei
  • Wang, Yi
  • Wu, Yunxia
  • Li, Hongwu
  • Yao, Zhihong

Abstract

With the development of autonomous driving technology, designing connected automated vehicles (CAVs) control strategies to mitigate traffic oscillations has become a hot topic. Most current control strategies are mainly oriented to single-lane highway scenarios and do not consider vehicles' lane-changing behaviors. To address the gap, this paper proposes the Follower-Stopper-Platoon (FSP) strategy, which attempts to mitigate traffic oscillation by controlling a platoon of CAVs in a two-lane scenario. Firstly, based on the Follower-Stopper (FS) control and considering CAVs' platoon behaviors, this paper proposes the FSP strategy and compares it with two comparative strategies, the Baseline and FS strategies. Then, a two-lane mixed traffic flow cellular automata model is developed and used to verify the effectiveness of the FSP strategy. Finally, this study demonstrates the efficacy of the FSP strategy by designing simulation experiments and analyzes the effect of CAVs' platoon size on the control effect. The result shows that (1) the FSP strategy can overcome the shortcomings of the FS control and will increase traffic flow speed while mitigating traffic oscillations. (2) In a two-lane scenario, as penetration rates of CAVs and traffic densities increase, the FSP strategy's advantages in mitigating traffic oscillations, reducing energy consumption and pollutant emissions, and improving speed and passenger comfort are gradually apparent. (3) Under the FSP strategy, the larger the maximum size of the CAVs platoon, the better the performance of the mixed traffic flow in terms of traffic efficiency, stability, fuel consumption, and pollutant emission.

Suggested Citation

  • Jiang, Yangsheng & Cong, Hongwei & Wang, Yi & Wu, Yunxia & Li, Hongwu & Yao, Zhihong, 2023. "A new control strategy of CAVs platoon for mitigating traffic oscillation in a two-lane highway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
  • Handle: RePEc:eee:phsmap:v:630:y:2023:i:c:s0378437123008440
    DOI: 10.1016/j.physa.2023.129289
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123008440
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rodrigo C. Carlson & Ioannis Papamichail & Markos Papageorgiou & Albert Messmer, 2010. "Optimal Motorway Traffic Flow Control Involving Variable Speed Limits and Ramp Metering," Transportation Science, INFORMS, vol. 44(2), pages 238-253, May.
    2. Gipps, P.G., 1981. "A behavioural car-following model for computer simulation," Transportation Research Part B: Methodological, Elsevier, vol. 15(2), pages 105-111, April.
    3. Ye, Lanhang & Yamamoto, Toshiyuki, 2019. "Evaluating the impact of connected and autonomous vehicles on traffic safety," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    4. Yao, Zhihong & Wang, Yi & Liu, Bo & Zhao, Bin & Jiang, Yangsheng, 2021. "Fuel consumption and transportation emissions evaluation of mixed traffic flow with connected automated vehicles and human-driven vehicles on expressway," Energy, Elsevier, vol. 230(C).
    5. Jiang, Yangsheng & Ren, Tingting & Ma, Yuqin & Wu, Yunxia & Yao, Zhihong, 2023. "Traffic safety evaluation of mixed traffic flow considering the maximum platoon size of connected automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    6. Bilbao-Ubillos, Javier, 2008. "The costs of urban congestion: Estimation of welfare losses arising from congestion on cross-town link roads," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(8), pages 1098-1108, October.
    7. Zhou, Linjie & Ruan, Tiancheng & Ma, Ke & Dong, Changyin & Wang, Hao, 2021. "Impact of CAV platoon management on traffic flow considering degradation of control mode," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    8. Nishi, Ryosuke & Tomoeda, Akiyasu & Shimura, Kenichiro & Nishinari, Katsuhiro, 2013. "Theory of jam-absorption driving," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 116-129.
    9. Jiang, Yangsheng & Wang, Sichen & Yao, Zhihong & Zhao, Bin & Wang, Yi, 2021. "A cellular automata model for mixed traffic flow considering the driving behavior of connected automated vehicle platoons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    10. Yao, Zhihong & Gu, Qiufan & Jiang, Yangsheng & Ran, Bin, 2022. "Fundamental diagram and stability of mixed traffic flow considering platoon size and intensity of connected automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    11. Vranken, Tim & Schreckenberg, Michael, 2022. "Modelling multi-lane heterogeneous traffic flow with human-driven, automated, and communicating automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    12. Rickert, M. & Nagel, K. & Schreckenberg, M. & Latour, A., 1996. "Two lane traffic simulations using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 231(4), pages 534-550.
    13. Bowen Gong & Fanting Wang & Ciyun Lin & Dayong Wu, 2022. "Modeling HDV and CAV Mixed Traffic Flow on a Foggy Two-Lane Highway with Cellular Automata and Game Theory Model," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    14. Chen, Danjue & Ahn, Soyoung & Laval, Jorge & Zheng, Zuduo, 2014. "On the periodicity of traffic oscillations and capacity drop: The role of driver characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 117-136.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zhengwu & Chen, Tao & Wang, Yi & Li, Hao, 2024. "A cellular automaton model for mixed traffic flow considering the size of CAV platoon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    2. Jiang, Yangsheng & Cong, Hongwei & Chen, Hongyu & Wu, Yunxia & Yao, Zhihong, 2024. "Adaptive cruise control design for collision risk avoidance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    3. Ren, Wenhao & Zhao, Xiaohua & Li, Haijian & Fu, Qiang, 2024. "Traffic flow impact of mixed heterogeneous platoons on highways: an approach combining driving simulation and microscopic traffic simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    4. Li, Ming & Yu, Xinrui & Fei, Jiahao & Jin, Xiaoyong & Bai, Wei & Yao, Zhihong, 2024. "Regional traffic congestion coordination control based on critical links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 647(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Yangsheng & Cong, Hongwei & Chen, Hongyu & Wu, Yunxia & Yao, Zhihong, 2024. "Adaptive cruise control design for collision risk avoidance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    2. Wu, Xuelian & Postorino, Maria Nadia & Mantecchini, Luca, 2024. "Impacts of connected autonomous vehicle platoon breakdown on highway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    3. Guo, Mengting & Bai, Yang & Li, Xia & Zhou, Wei & Wang, Chunyang & Ma, Xinwei & Gao, Huixin & Xiao, Yuewen, 2023. "Freeway capacity modeling and analysis for traffic mixed with human-driven and connected automated vehicles considering driver behavior characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    4. Saifuzzaman, Mohammad & Zheng, Zuduo & Haque, Md. Mazharul & Washington, Simon, 2017. "Understanding the mechanism of traffic hysteresis and traffic oscillations through the change in task difficulty level," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 523-538.
    5. Han, Youngjun & Chen, Danjue & Ahn, Soyoung, 2017. "Variable speed limit control at fixed freeway bottlenecks using connected vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 113-134.
    6. Dong, Jiakuan & Gao, Zhijun & Luo, Dongyu & Wang, Jiangfeng & Chen, Lei, 2024. "Impact of beyond-line-of-sight connectivity on the capacity and stability of mixed traffic flow: An analytical and numerical investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    7. Pei, Yulong & Pan, Sheng & Wen, Yuhang, 2024. "Analysis of roadway capacity for heterogeneous traffic flows considering the degree of trust of drivers of HVs in CAVs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    8. Li, Xia & Xiao, Yuewen & Zhao, Xiaodong & Ma, Xinwei & Wang, Xintong, 2023. "Modeling mixed traffic flows of human-driving vehicles and connected and autonomous vehicles considering human drivers’ cognitive characteristics and driving behavior interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    9. Li, Ruijie & Sun, Siyuan & Wu, Yunxia & Hao, Huijun & Wen, Xuguang & Yao, Zhihong, 2023. "Fundamental diagram of mixed traffic flow considering time lags, platooning intensity, and the degradation of connected automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
    10. Yao, Zhihong & Gu, Qiufan & Jiang, Yangsheng & Ran, Bin, 2022. "Fundamental diagram and stability of mixed traffic flow considering platoon size and intensity of connected automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    11. Jiang, Chenming & Yin, Shicong & Yao, Zhihong & He, Junliang & Jiang, Rui & Jiang, Yu, 2024. "Safety evaluation of mixed traffic flow with truck platoons equipped with (cooperative) adaptive cruise control, stochastic human-driven cars and trucks on port freeways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    12. Jiang, Yangsheng & Wang, Sichen & Yao, Zhihong & Zhao, Bin & Wang, Yi, 2021. "A cellular automata model for mixed traffic flow considering the driving behavior of connected automated vehicle platoons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    13. Zeng, Junwei & Qian, Yongsheng & Wang, Wenhai & Xu, Dejie & Li, Haijun, 2023. "The impact of connected automated vehicles and platoons on the traffic safety and stability in complex heterogeneous traffic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    14. Li, Yun & Zhang, Wenshan & Zhang, Shengrui & Pan, Yingjiu & Zhou, Bei & Jiao, Shuaiyang & Wang, Jianpo, 2024. "An improved eco-driving strategy for mixed platoons of autonomous and human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    15. Jiang, Yangsheng & Chen, Hongyu & Cong, Hongwei & Wu, Yunxia & Yao, Zhihong, 2024. "Fundamental diagram of mixed traffic flow of CAVs with different connectivity and automation levels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 646(C).
    16. Jiang, Yangsheng & Ren, Tingting & Ma, Yuqin & Wu, Yunxia & Yao, Zhihong, 2023. "Traffic safety evaluation of mixed traffic flow considering the maximum platoon size of connected automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    17. He, Zhengbing & Zheng, Liang & Guan, Wei, 2015. "A simple nonparametric car-following model driven by field data," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 185-201.
    18. Di, Yunran & Zhang, Weihua & Ding, Heng & Zheng, Xiaoyan & Ran, Bin, 2024. "Cooperative control of dynamic CAV dedicated lanes and vehicle active lane changing in expressway bottleneck areas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    19. Wu, Yuanyuan & Wang, David Z.W. & Zhu, Feng, 2022. "Influence of CAVs platooning on intersection capacity under mixed traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    20. Nishi, Ryosuke, 2020. "Theoretical conditions for restricting secondary jams in jam-absorption driving scenarios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:630:y:2023:i:c:s0378437123008440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.