IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v630y2023ics0378437123008142.html
   My bibliography  Save this article

Modeling and analysis of car-following models incorporating multiple lead vehicles and acceleration information in heterogeneous traffic flow

Author

Listed:
  • Cui, Ziyu
  • Wang, Xiaoning
  • Ci, Yusheng
  • Yang, Changyun
  • Yao, Jia

Abstract

In the foreseeable future, a complex heterogeneous traffic environment will emerge as Connected and Autonomous Vehicles (CAVs) coexist with Human-driven Vehicles (HDVs). Consequently, understanding the impact of CAVs on car-following behavior and the operational characteristics of heterogeneous traffic flow becomes crucial before their widespread deployment. To tackle this challenge, this research proposes an improved car-following model based on the Intelligent Driver Model (IDM). The model incorporates the position, velocity, and acceleration information of both front and sub-front vehicles in the heterogeneous traffic flow. The impact of different types of information on the model's stability is verified through linear stability analysis while investigating the operational characteristics of traffic flow during vehicle start-up. Additionally, the car-following modes are classified based on the type of leading vehicle, and the corresponding following model is formulated. The results indicate that the improved model significantly improves traffic flow stability, particularly when considering acceleration information. Compared to the front vehicle, the influence of the sub-front vehicle on traffic flow stability is less significant, but their combined impact yields positive effects. Furthermore, the improved model reduces the start-up time of vehicles at signalized intersections by 7.9% and enables a smoother start-up process for vehicles. Moreover, CAVs can mitigate the impact of HDV's disturbances on the overall heterogeneous fleet operation by adjusting their spacing relative to the front vehicle. With an increasing penetration rate, the velocity fluctuation of the entire fleet decreases.

Suggested Citation

  • Cui, Ziyu & Wang, Xiaoning & Ci, Yusheng & Yang, Changyun & Yao, Jia, 2023. "Modeling and analysis of car-following models incorporating multiple lead vehicles and acceleration information in heterogeneous traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
  • Handle: RePEc:eee:phsmap:v:630:y:2023:i:c:s0378437123008142
    DOI: 10.1016/j.physa.2023.129259
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123008142
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129259?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yao, Zhihong & Xu, Taorang & Jiang, Yangsheng & Hu, Rong, 2021. "Linear stability analysis of heterogeneous traffic flow considering degradations of connected automated vehicles and reaction time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    2. Yao, Zhihong & Hu, Rong & Wang, Yi & Jiang, Yangsheng & Ran, Bin & Chen, Yanru, 2019. "Stability analysis and the fundamental diagram for mixed connected automated and human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    3. Jia, Dongyao & Ngoduy, Dong, 2016. "Enhanced cooperative car-following traffic model with the combination of V2V and V2I communication," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 172-191.
    4. Li, Zhipeng & Li, Wenzhong & Xu, Shangzhi & Qian, Yeqing, 2015. "Stability analysis of an extended intelligent driver model and its simulations under open boundary condition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 526-536.
    5. Kuang, Hua & Wang, Mei-Ting & Lu, Fang-Hua & Bai, Ke-Zhao & Li, Xing-Li, 2019. "An extended car-following model considering multi-anticipative average velocity effect under V2V environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    6. Kuang, Hua & Xu, Zhi-Peng & Li, Xing-Li & Lo, Siu-Ming, 2017. "An extended car-following model accounting for the average headway effect in intelligent transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 778-787.
    7. Bansal, Prateek & Kockelman, Kara M., 2017. "Forecasting Americans’ long-term adoption of connected and autonomous vehicle technologies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 49-63.
    8. Ci, Yusheng & Wu, Lina & Zhao, Jiafa & Sun, Yichen & Zhang, Guohui, 2019. "V2I-based car-following modeling and simulation of signalized intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 672-679.
    9. Wen-Xing, Zhu & Li-Dong, Zhang, 2018. "A new car-following model for autonomous vehicles flow with mean expected velocity field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 2154-2165.
    10. Wang, Xiaoning & Liu, Minzhuang & Ci, Yusheng & Wu, Lina, 2022. "Effect of front two adjacent vehicles’ velocity information on car-following model construction and stability analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    11. Zhu, Wen-Xing & Zhang, H.M., 2018. "Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 274-285.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ting, Samson & Lymburn, Thomas & Stemler, Thomas & Sun, Yuchao & Small, Michael, 2024. "Parameter estimation for Gipps’ car following model in a Bayesian framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    2. Yin, Yu-Hang & Lü, Xing & Jiang, Rui & Jia, Bin & Gao, Ziyou, 2024. "Kinetic analysis and numerical tests of an adaptive car-following model for real-time traffic in ITS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaoning & Liu, Minzhuang & Ci, Yusheng & Wu, Lina, 2022. "Effect of front two adjacent vehicles’ velocity information on car-following model construction and stability analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    2. Junyan Han & Jinglei Zhang & Xiaoyuan Wang & Yaqi Liu & Quanzheng Wang & Fusheng Zhong, 2020. "An Extended Car-Following Model Considering Generalized Preceding Vehicles in V2X Environment," Future Internet, MDPI, vol. 12(12), pages 1-15, November.
    3. Luo, Ruifa & Gu, Qiufan & Xu, Taorang & Hao, Huijun & Yao, Zhihong, 2022. "Analysis of linear internal stability for mixed traffic flow of connected and automated vehicles considering multiple influencing factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    4. Xiaoyuan Wang & Junyan Han & Chenglin Bai & Huili Shi & Jinglei Zhang & Gang Wang, 2021. "Research on the Impacts of Generalized Preceding Vehicle Information on Traffic Flow in V2X Environment," Future Internet, MDPI, vol. 13(4), pages 1-17, March.
    5. Yao, Zhihong & Gu, Qiufan & Jiang, Yangsheng & Ran, Bin, 2022. "Fundamental diagram and stability of mixed traffic flow considering platoon size and intensity of connected automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    6. Luo, Ying & Chen, Yanyan & Lu, Kaiming & Chen, Liang & Zhang, Jian, 2024. "Modeling and analysis of heterogeneous traffic flow considering dynamic information flow topology and driving behavioral characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    7. Chang, Xin & Li, Haijian & Rong, Jian & Zhao, Xiaohua & Li, An’ran, 2020. "Analysis on traffic stability and capacity for mixed traffic flow with platoons of intelligent connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    8. Ma, Ke & Wang, Hao & Ruan, Tiancheng, 2021. "Analysis of road capacity and pollutant emissions: Impacts of Connected and automated vehicle platoons on traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    9. Zhou, Linjie & Ruan, Tiancheng & Ma, Ke & Dong, Changyin & Wang, Hao, 2021. "Impact of CAV platoon management on traffic flow considering degradation of control mode," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    10. Vranken, Tim & Schreckenberg, Michael, 2022. "Modelling multi-lane heterogeneous traffic flow with human-driven, automated, and communicating automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    11. Yao, Zhihong & Xu, Taorang & Jiang, Yangsheng & Hu, Rong, 2021. "Linear stability analysis of heterogeneous traffic flow considering degradations of connected automated vehicles and reaction time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    12. Wang, Xinke & Zhang, Jian & Li, Honghai & He, Zhengbing, 2023. "A mixed traffic car-following behavior model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    13. Yu, Bin & Zhou, Huixin & Wang, Lin & Wang, Zirui & Cui, Shaohua, 2021. "An extended two-lane car-following model considering the influence of heterogeneous speed information on drivers with different characteristics under honk environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    14. Li, Chao & Zhao, Xiaomei & Xie, Dongfan, 2022. "Steady-state performance and dynamic performance of heterogeneous platoons under a connected environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    15. Vranken, Tim & Sliwa, Benjamin & Wietfeld, Christian & Schreckenberg, Michael, 2021. "Adapting a cellular automata model to describe heterogeneous traffic with human-driven, automated, and communicating automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    16. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2018. "An extended car-following model under V2V communication environment and its delayed-feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 349-358.
    17. Cheng-Ju Song & Hong-Fei Jia, 2022. "Car-Following Model Optimization and Simulation Based on Cooperative Adaptive Cruise Control," Sustainability, MDPI, vol. 14(21), pages 1-12, October.
    18. Di, Yunran & Zhang, Weihua & Ding, Heng & Zheng, Xiaoyan & Ran, Bin, 2024. "Cooperative control of dynamic CAV dedicated lanes and vehicle active lane changing in expressway bottleneck areas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    19. Yin, Yu-Hang & Lü, Xing & Jiang, Rui & Jia, Bin & Gao, Ziyou, 2024. "Kinetic analysis and numerical tests of an adaptive car-following model for real-time traffic in ITS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    20. Wu, Yuanyuan & Wang, David Z.W. & Zhu, Feng, 2022. "Influence of CAVs platooning on intersection capacity under mixed traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:630:y:2023:i:c:s0378437123008142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.