IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v578y2021ics0378437121003812.html
   My bibliography  Save this article

Improving traffic efficiency during yellow lights using connected vehicles

Author

Listed:
  • Du, Mengxiao
  • Liu, Jiahui
  • Chen, Qun

Abstract

Whether to go or stop at the onset of a yellow light is a dilemma. Drivers like to go but choose to stop for fear of safety. Mixing connected vehicles (CVs) in flow can improve traffic passing rate. A cellular automata model for the stop/go decision-making processes of manual vehicles (MVs) and CVs is developed considering various practical factors including interactions between CVs and MVs. Results of simulations show that the passing rate keeps increasing with the penetration rate p of CVs but the throughput drops after reaching the maximum at p=0.6 due to decrease in the vehicles affected by the yellow light. Besides, sequences with more concentrated CVs produce higher passing rates. The magnitude of incoming flow also has a substantial impact on the passing rate. Moderate incoming flows bring about high passing rates while low passing rates occur for light flows on account of weak traffic interactions and for heavy flows because of high density and low velocity.

Suggested Citation

  • Du, Mengxiao & Liu, Jiahui & Chen, Qun, 2021. "Improving traffic efficiency during yellow lights using connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
  • Handle: RePEc:eee:phsmap:v:578:y:2021:i:c:s0378437121003812
    DOI: 10.1016/j.physa.2021.126108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121003812
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tian, Jun-fang & Jia, Bin & Li, Xin-gang & Jiang, Rui & Zhao, Xiao-mei & Gao, Zi-you, 2009. "Synchronized traffic flow simulating with cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(23), pages 4827-4837.
    2. R. Marzoug & B. Castillo Téllez & M. Castillo Téllez & G. A. Mejía Pérez & A. Bassam & O. Oubram, 2019. "Optimization of traffic intersection using connected vehicles," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 30(06), pages 1-13, June.
    3. Lu, Guangquan & Wang, Yunpeng & Wu, Xinkai & Liu, Henry X., 2015. "Analysis of yellow-light running at signalized intersections using high-resolution traffic data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 73(C), pages 39-52.
    4. Marzoug, R. & Bamaarouf, O. & Lakouari, N. & Castillo-Téllez, B. & Téllez, M. Castillo & Oubram, O., 2021. "Traffic intersection characteristics with accidents and evacuation of damaged cars," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    5. Davis, L.C., 2016. "Improving traffic flow at a 2-to-1 lane reduction with wirelessly connected, adaptive cruise control vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 320-332.
    6. Rey, David & Levin, Michael W. & Dixit, Vinayak V., 2021. "Online incentive-compatible mechanisms for traffic intersection auctions," European Journal of Operational Research, Elsevier, vol. 293(1), pages 229-247.
    7. Zhou, Y.J. & Zhu, H.B. & Guo, M.M. & Zhou, J.L., 2020. "Impact of CACC vehicles’ cooperative driving strategy on mixed four-lane highway traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    8. Fan, Hongqiang & Jia, Bin & Tian, Junfang & Yun, Lifen, 2014. "Characteristics of traffic flow at a non-signalized intersection in the framework of game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 172-180.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Peng & Zhu, Huibing & Zhou, Yijiang, 2022. "Modeling cooperative driving strategies of automated vehicles considering trucks’ behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    2. Iliopoulou, Christina & Kampitakis, Emmanouil & Kepaptsoglou, Konstantinos & Vlahogianni, Eleni I., 2022. "Dynamic traffic-aware auction-based signal control under vehicle to infrastructure communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    3. Rehborn, Hubert & Klenov, Sergey L. & Palmer, Jochen, 2011. "An empirical study of common traffic congestion features based on traffic data measured in the USA, the UK, and Germany," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4466-4485.
    4. Xi, Haoning & Liu, Wei & Waller, S. Travis & Hensher, David A. & Kilby, Philip & Rey, David, 2023. "Incentive-compatible mechanisms for online resource allocation in Mobility-as-a-Service systems," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 119-147.
    5. Marzoug, R. & Lakouari, N. & Ez-Zahraouy, H. & Castillo Téllez, B. & Castillo Téllez, M. & Cisneros Villalobos, L., 2022. "Modeling and simulation of car accidents at a signalized intersection using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    6. Tian, Junfang & Treiber, Martin & Ma, Shoufeng & Jia, Bin & Zhang, Wenyi, 2015. "Microscopic driving theory with oscillatory congested states: Model and empirical verification," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 138-157.
    7. Ding, Xiaoshu & Qi, Qi & Jian, Sisi & Yang, Hai, 2023. "Mechanism design for Mobility-as-a-Service platform considering travelers’ strategic behavior and multidimensional requirements," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 1-30.
    8. Jou, Rong-Chang & Kuo, Chung-Wei & Chiu, Yi-Chun, 2022. "Bidding behaviors for international airline seats in short/long distance flights," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 55-79.
    9. Xu, Ting & Jiang, Ruisen & Wen, Changlei & Liu, Meijun & Zhou, Jiehan, 2019. "A hybrid model for lane change prediction with V2X-based driver assistance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    10. Niu, Zhipeng & Hu, Xiaowei & Fatmi, Mahmudur & Qi, Shouming & Wang, Siqing & Yang, Haihua & An, Shi, 2023. "Parking occupancy prediction under COVID-19 anti-pandemic policies: A model based on a policy-aware temporal convolutional network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    11. Li, Sutong & Kang, Leilei & Huang, Hao & Liu, Lan, 2023. "A perimeter control model of urban road network based on cooperative-noncooperative two-stage game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    12. Mohammed Al-Turki & Nedal T. Ratrout & Syed Masiur Rahman & Imran Reza, 2021. "Impacts of Autonomous Vehicles on Traffic Flow Characteristics under Mixed Traffic Environment: Future Perspectives," Sustainability, MDPI, vol. 13(19), pages 1-22, October.
    13. Leich, Andreas & Nippold, Ronald & Schadschneider, Andreas & Wagner, Peter, 2024. "Physical models of traffic safety at crossing streams," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    14. Vranken, Tim & Schreckenberg, Michael, 2022. "Modelling multi-lane heterogeneous traffic flow with human-driven, automated, and communicating automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    15. Krzysztof J. Szajowski & Kinga Włodarczyk, 2020. "Drivers’ Skills and Behavior vs. Traffic at Intersections," Mathematics, MDPI, vol. 8(3), pages 1-20, March.
    16. Zhang, Yan-Tao & Hu, Mao-Bin & Chen, Yu-Zhang & Shi, Cong-Ling, 2023. "Cooperative platoon forming strategy for connected autonomous vehicles in mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    17. Tanimoto, Jun & Futamata, Masanori & Tanaka, Masaki, 2020. "Automated vehicle control systems need to solve social dilemmas to be disseminated," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    18. Zhu, Chenqiang & Zhong, Shiquan & Li, Guangyu & Ma, Shoufeng, 2017. "New control strategy for the lattice hydrodynamic model of traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 445-453.
    19. Baratian-Ghorghi, Fatemeh & Zhou, Huaguo & Zech, Wesley C., 2016. "Red-light running traffic violations: A novel time-based method for determining a fine structure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 93(C), pages 55-65.
    20. Quan Yu & Linlong Lei & Yuqi Bao & Li Wang, 2022. "Research on Safety and Traffic Efficiency of Mixed Traffic Flows in the Converging Section of a Super-Freeway Ramp," Sustainability, MDPI, vol. 14(20), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:578:y:2021:i:c:s0378437121003812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.