IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v585y2022ics0378437121006592.html
   My bibliography  Save this article

Modeling cooperative driving strategies of automated vehicles considering trucks’ behavior

Author

Listed:
  • Zhang, Peng
  • Zhu, Huibing
  • Zhou, Yijiang

Abstract

Modeling impact of trucks on the cooperative driving strategies of automated vehicles would be a challenge. It needs to figure out the behaviors of CACC cars and CACC trucks during the formation and disengagement of CACC strings when the manually driven vehicles, i.e., cars and trucks, are mixed in the traffic flow. Also it requires depicting the behaviors of manually driven cars and trucks under the influence of CACC cooperative strategy that are intended to enhance the CACC strings. Furthermore it needs to investigate the effect of CACC trucks and manually driven trucks on the characteristics of traffic flow respectively. To deal with these problems, we propose a four-lane cellular automaton traffic modeling framework to simulate the interaction between automated vehicles and manually driven vehicles. Numerical results show that trucks do have negative effect on CACC strings’ incorporating, and reduce the traffic capacity. Besides the CACC strings always maintain small scale due to the complicated composition of vehicles. According to the different mixing rate of CACC trucks and manually driven trucks, the managed lane strategy for trucks is proposed aiming to improve the traffic capacity. It indicates that this strategy exhibits different effects depending on the penetrations of CACC trucks, manually driven trucks and CACC cars. However the restriction strategy for trucks is recommended when CACC trucks’ penetration is larger than manually driven trucks’ penetration.

Suggested Citation

  • Zhang, Peng & Zhu, Huibing & Zhou, Yijiang, 2022. "Modeling cooperative driving strategies of automated vehicles considering trucks’ behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
  • Handle: RePEc:eee:phsmap:v:585:y:2022:i:c:s0378437121006592
    DOI: 10.1016/j.physa.2021.126386
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121006592
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126386?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Davis, L.C., 2016. "Improving traffic flow at a 2-to-1 lane reduction with wirelessly connected, adaptive cruise control vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 320-332.
    2. Zhou, Y.J. & Zhu, H.B. & Guo, M.M. & Zhou, J.L., 2020. "Impact of CACC vehicles’ cooperative driving strategy on mixed four-lane highway traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    3. Yuan, Yao-Ming & Jiang, Rui & Hu, Mao-Bin & Wu, Qing-Song & Wang, Ruili, 2009. "Traffic flow characteristics in a mixed traffic system consisting of ACC vehicles and manual vehicles: A hybrid modelling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(12), pages 2483-2491.
    4. Shladover, Steven & Lu, Xiao-Yun & Yang, Shiyan & Ramezani, Hani & Spring, John & Nowakowski, Christopher & Nelson, David, 2018. "Cooperative Adaptive Cruise Control (CACC) For Partially Automated Truck Platooning:Final Report," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt260060w4, Institute of Transportation Studies, UC Berkeley.
    5. Zhong, Zijia & Lee, Joyoung, 2019. "The effectiveness of managed lane strategies for the near-term deployment of cooperative adaptive cruise control," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 257-270.
    6. Zhu, H.B. & Zhou, Y.J. & Wu, W.J., 2020. "Modeling traffic flow mixed with automated vehicles considering drivers ’ character difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    7. Davis, L.C., 2007. "Effect of adaptive cruise control systems on mixed traffic flow near an on-ramp," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 274-290.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Chenming & Yin, Shicong & Yao, Zhihong & He, Junliang & Jiang, Rui & Jiang, Yu, 2024. "Safety evaluation of mixed traffic flow with truck platoons equipped with (cooperative) adaptive cruise control, stochastic human-driven cars and trucks on port freeways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quan Yu & Linlong Lei & Yuqi Bao & Li Wang, 2022. "Research on Safety and Traffic Efficiency of Mixed Traffic Flows in the Converging Section of a Super-Freeway Ramp," Sustainability, MDPI, vol. 14(20), pages 1-15, October.
    2. Wang, Baojie & Li, Wei & Wen, Haosong & Hu, Xiaojian, 2021. "Modeling impacts of driving automation system on mixed traffic flow at off-ramp freeway facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    3. Davis, L.C., 2012. "Mitigation of congestion at a traffic bottleneck with diversion and lane restrictions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1679-1691.
    4. Diakaki, Christina & Papageorgiou, Markos & Papamichail, Ioannis & Nikolos, Ioannis, 2015. "Overview and analysis of Vehicle Automation and Communication Systems from a motorway traffic management perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 147-165.
    5. Du, Mengxiao & Liu, Jiahui & Chen, Qun, 2021. "Improving traffic efficiency during yellow lights using connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    6. Qiao, Yanfeng & Xue, Yu & Cen, Bingling & Zhang, Kun & Chen, Dong & Pan, Wei, 2024. "Study on particulate emission in two-lane mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    7. Guo, Lantian & Zhao, Xiangmo & Yu, Shaowei & Li, Xiuhai & Shi, Zhongke, 2017. "An improved car-following model with multiple preceding cars’ velocity fluctuation feedback," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 436-444.
    8. Rehborn, Hubert & Klenov, Sergey L. & Palmer, Jochen, 2011. "An empirical study of common traffic congestion features based on traffic data measured in the USA, the UK, and Germany," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4466-4485.
    9. Liu, Huaqing & Jiang, Rui, 2021. "Improving comfort level in traffic flow of CACC vehicles at lane drop on two-lane highways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 575(C).
    10. Davis, L.C., 2018. "Dynamics of a long platoon of cooperative adaptive cruise control vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 818-834.
    11. Li, Huamin & Zhang, Shun, 2022. "Lane change behavior with uncertainty and fuzziness for human driving vehicles and its simulation in mixed traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    12. Zong, Fang & Wang, Meng & Tang, Jinjun & Zeng, Meng, 2022. "Modeling AVs & RVs’ car-following behavior by considering impacts of multiple surrounding vehicles and driving characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    13. Pan, Yuchen & Wu, Yu & Xu, Lu & Xia, Chengyi & Olson, David L., 2024. "The impacts of connected autonomous vehicles on mixed traffic flow: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    14. Chengju Song & Hongfei Jia, 2022. "Multi-State Car-Following Behavior Simulation in a Mixed Traffic Flow for ICVs and MDVs," Sustainability, MDPI, vol. 14(20), pages 1-12, October.
    15. Yao, Zhihong & Li, Le & Liao, Wenbin & Wang, Yi & Wu, Yunxia, 2024. "Optimal lane management policy for connected automated vehicles in mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    16. Ci, Yusheng & Wu, Lina & Zhao, Jiafa & Sun, Yichen & Zhang, Guohui, 2019. "V2I-based car-following modeling and simulation of signalized intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 672-679.
    17. Davis, L.C., 2017. "Dynamic origin-to-destination routing of wirelessly connected, autonomous vehicles on a congested network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 93-102.
    18. Chen, Jin & Sun, Dihua & Zhao, Min & Li, Yang & Liu, Zhongcheng, 2021. "DCFS-based deep learning supervisory control for modeling lane keeping of expert drivers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    19. Yang, Da & Jin, Peter (Jing) & Pu, Yun & Ran, Bin, 2014. "Stability analysis of the mixed traffic flow of cars and trucks using heterogeneous optimal velocity car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 371-383.
    20. Li, Xia & You, Zhijian & Ma, Xinwei & Pang, Xiaomin & Min, Xuefeng & Cui, Hongjun, 2024. "Effect of autonomous vehicles on car-following behavior of human drivers: Analysis based on structural equation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:585:y:2022:i:c:s0378437121006592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.