IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v640y2024ics037843712400178x.html
   My bibliography  Save this article

Physical models of traffic safety at crossing streams

Author

Listed:
  • Leich, Andreas
  • Nippold, Ronald
  • Schadschneider, Andreas
  • Wagner, Peter

Abstract

Traffic safety at intersecting streams is studied quantitatively using methods from Statistical Mechanics on the basis of simple microscopic traffic flow models. In order to determine a relationship between traffic flow and the number of crashes, the modeling focus is on the building block of any road network, namely the crossing of two streams. In this paper, it is shown that the number of crossing conflicts is proportional to the product of the two traffic flows from which a simple model is developed. This model substantiates known empirical findings. Since real crash data are obtained by an involved process from such building blocks, there is a difference between the theoretical and empirical results. This process is modeled here as well and narrows the mismatch between theory and observation.

Suggested Citation

  • Leich, Andreas & Nippold, Ronald & Schadschneider, Andreas & Wagner, Peter, 2024. "Physical models of traffic safety at crossing streams," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
  • Handle: RePEc:eee:phsmap:v:640:y:2024:i:c:s037843712400178x
    DOI: 10.1016/j.physa.2024.129669
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712400178X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129669?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Marzoug & N. Lakouari & O. Oubram & H. Ez-Zahraouy & A. Khallouk & M. Limón-Mendoza & J. G. Vera-Dimas, 2018. "Impact of traffic lights on car accidents at intersections," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 29(12), pages 1-14, December.
    2. Marzoug, R. & Bamaarouf, O. & Lakouari, N. & Castillo-Téllez, B. & Téllez, M. Castillo & Oubram, O., 2021. "Traffic intersection characteristics with accidents and evacuation of damaged cars," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    3. repec:wsi:afexxx:v:13:y:2018:i:04:n:s0129183118501218 is not listed on IDEAS
    4. Angus Eugene Retallack & Bertram Ostendorf, 2020. "Relationship Between Traffic Volume and Accident Frequency at Intersections," IJERPH, MDPI, vol. 17(4), pages 1-22, February.
    5. Lord, Dominique & Mannering, Fred, 2010. "The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 291-305, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sai Chand & Zhuolin Li & Abdulmajeed Alsultan & Vinayak V. Dixit, 2022. "Comparing and Contrasting the Impacts of Macro-Level Factors on Crash Duration and Frequency," IJERPH, MDPI, vol. 19(9), pages 1-19, May.
    2. Najaf, Pooya & Thill, Jean-Claude & Zhang, Wenjia & Fields, Milton Greg, 2018. "City-level urban form and traffic safety: A structural equation modeling analysis of direct and indirect effects," Journal of Transport Geography, Elsevier, vol. 69(C), pages 257-270.
    3. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    4. Bo Yang & Yao Wu & Weihua Zhang & Jie Bao, 2020. "Modeling Collision Probability on Freeway: Accounting for Different Types and Severities in Various LOS," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    5. Dong, Chunjiao & Shao, Chunfu & Clarke, David B. & Nambisan, Shashi S., 2018. "An innovative approach for traffic crash estimation and prediction on accommodating unobserved heterogeneities," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 407-428.
    6. Lv, Jinpeng & Lord, Dominique & Zhang, Yunlong & Chen, Zhi, 2015. "Investigating Peltzman effects in adopting mandatory seat belt laws in the US: Evidence from non-occupant fatalities," Transport Policy, Elsevier, vol. 44(C), pages 58-64.
    7. Ye, Wei & Xu, Yueru & Shi, Xiaomeng & Shiwakoti, Nirajan & Ye, Zhirui & Zheng, Yuan, 2024. "A macroscopic safety indicator for road segment: application of entropy theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    8. Ruru Xing & Zimu Li & Xiaoyu Cai & Zepeng Yang & Ningning Zhang & Tao Yang, 2023. "Accident Rate Prediction Model for Urban Expressway Underwater Tunnel," Sustainability, MDPI, vol. 15(13), pages 1-28, July.
    9. Ulak, Mehmet Baran & Ozguven, Eren Erman & Spainhour, Lisa & Vanli, Omer Arda, 2017. "Spatial investigation of aging-involved crashes: A GIS-based case study in Northwest Florida," Journal of Transport Geography, Elsevier, vol. 58(C), pages 71-91.
    10. Milhan Moomen & Amirarsalan Mehrara Molan & Khaled Ksaibati, 2023. "A Random Parameters Multinomial Logit Model Analysis of Median Barrier Crash Injury Severity on Wyoming Interstates," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    11. Yan, Ying & Zhang, Ying & Yang, Xiangli & Hu, Jin & Tang, Jinjun & Guo, Zhongyin, 2020. "Crash prediction based on random effect negative binomial model considering data heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    12. Hwachyi Wang & S. K. Jason Chang & Hans De Backer & Dirk Lauwers & Philippe De Maeyer, 2019. "Integrating Spatial and Temporal Approaches for Explaining Bicycle Crashes in High-Risk Areas in Antwerp (Belgium)," Sustainability, MDPI, vol. 11(13), pages 1-28, July.
    13. Marzoug, R. & Lakouari, N. & Ez-Zahraouy, H. & Castillo Téllez, B. & Castillo Téllez, M. & Cisneros Villalobos, L., 2022. "Modeling and simulation of car accidents at a signalized intersection using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    14. Sun, Chenshuo & Pei, Xin & Hao, Junheng & Wang, Yewen & Zhang, Zuo & Wong, S.C., 2018. "Role of road network features in the evaluation of incident impacts on urban traffic mobility," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 101-116.
    15. Buckley, Cathal & Howley, Peter & Jordan, Phil, 2015. "The role of differing farming motivations on the adoption of nutrient management practices," International Journal of Agricultural Management, Institute of Agricultural Management, vol. 4(4), July.
    16. Kojiro Matsuo & Kosuke Miyazaki & Nao Sugiki, 2022. "A Method for Locational Risk Estimation of Vehicle–Children Accidents Considering Children’s Travel Purposes," IJERPH, MDPI, vol. 19(21), pages 1-16, October.
    17. Hana Naghawi, 2018. "Negative Binomial Regression Model for Road Crash Severity Prediction," Modern Applied Science, Canadian Center of Science and Education, vol. 12(4), pages 1-38, April.
    18. Rose Luke, 2023. "Current and Future Trends in Driver Behaviour and Traffic Safety Scholarship: An African Research Agenda," IJERPH, MDPI, vol. 20(5), pages 1-23, February.
    19. Guilong Xu & Jinliang Xu & Chao Gao & Rishuang Sun & Huagang Shan & Yongji Ma & Jinsong Ran, 2022. "A Novel Safety Assessment Framework for Pavement Friction Evolution Due to Traffic on Horizontal Curves," Sustainability, MDPI, vol. 14(17), pages 1-14, August.
    20. Chen Chen & Feng Guo, 2016. "Evaluating the influence of crashes on driving risk using recurrent event models and Naturalistic Driving Study data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(12), pages 2225-2238, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:640:y:2024:i:c:s037843712400178x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.