IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v540y2020ics0378437119315493.html
   My bibliography  Save this article

Impact of CACC vehicles’ cooperative driving strategy on mixed four-lane highway traffic flow

Author

Listed:
  • Zhou, Y.J.
  • Zhu, H.B.
  • Guo, M.M.
  • Zhou, J.L.

Abstract

Modeling the impact of the cooperative driving strategy adopted by Cooperative Adaptive Cruise Control (CACC) vehicles on the mixed traffic flow would be a challenge. It requires to figure out the behaviors of CACC vehicles during the formation and disengagement of CACC strings when the manually driven vehicles are mixed in the traffic flow. It also needs to depict the behaviors of manually driven vehicles under the influence of CACC operation strategy that are intended to enhance the CACC string. To deal with these problems, we propose a four-lane cellular automata traffic modeling framework to simulate the interaction between CACC vehicles and manually driven vehicles. The longitudinal position updating rules for CACC and ACC are based on the car-following rules presented by PATH laboratory of University of California, Berkeley. And three types of cooperative driving strategies are presented, which are reflected in the lane-changing rules, i.e., the baseline lane-changing rules, the promoting string strategy and the managed lane strategy. The corresponding impact of cooperative driving strategies on mixed four-lane traffic flow is investigated. The numerical results show that the presented cooperative driving strategies are effective to enable CACC to be assembled into strings. And the increase of CACC penetration could effectively alleviate traffic congestion and improve traffic capacity and stability. The results indicate that the mixed traffic flow shows different properties in terms of capacity and traffic congestion when different cooperative driving strategies are adopted.

Suggested Citation

  • Zhou, Y.J. & Zhu, H.B. & Guo, M.M. & Zhou, J.L., 2020. "Impact of CACC vehicles’ cooperative driving strategy on mixed four-lane highway traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
  • Handle: RePEc:eee:phsmap:v:540:y:2020:i:c:s0378437119315493
    DOI: 10.1016/j.physa.2019.122721
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119315493
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122721?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zhengwu & Chen, Tao & Wang, Yi & Li, Hao, 2024. "A cellular automaton model for mixed traffic flow considering the size of CAV platoon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    2. Sueyoshi, Fumi & Utsumi, Shinobu & Tanimoto, Jun, 2022. "Underlying social dilemmas in mixed traffic flow with lane changes," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    3. Wang, Baojie & Li, Wei & Wen, Haosong & Hu, Xiaojian, 2021. "Modeling impacts of driving automation system on mixed traffic flow at off-ramp freeway facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    4. Zhang, Peng & Zhu, Huibing & Zhou, Yijiang, 2022. "Modeling cooperative driving strategies of automated vehicles considering trucks’ behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    5. Jing, Dian & Yao, Enjian & Chen, Rongsheng, 2023. "Moving characteristics analysis of mixed traffic flow of CAVs and HVs around accident zones," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    6. Du, Mengxiao & Liu, Jiahui & Chen, Qun, 2021. "Improving traffic efficiency during yellow lights using connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    7. Mohammed Al-Turki & Nedal T. Ratrout & Syed Masiur Rahman & Imran Reza, 2021. "Impacts of Autonomous Vehicles on Traffic Flow Characteristics under Mixed Traffic Environment: Future Perspectives," Sustainability, MDPI, vol. 13(19), pages 1-22, October.
    8. Zhang, Yan-Tao & Hu, Mao-Bin & Chen, Yu-Zhang & Shi, Cong-Ling, 2023. "Cooperative platoon forming strategy for connected autonomous vehicles in mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    9. Hua, Xuedong & Yu, Weijie & Wang, Wei & Zhao, De, 2023. "Impact of multi-class stochastic cyberattacks on vehicle dynamics and rear-end collision risks for heterogeneous traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    10. Tanimoto, Jun & Futamata, Masanori & Tanaka, Masaki, 2020. "Automated vehicle control systems need to solve social dilemmas to be disseminated," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:540:y:2020:i:c:s0378437119315493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.