IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v526y2019ics037843711930651x.html
   My bibliography  Save this article

Lattice-Boltzmann method for analysis of combined forced convection and radiation heat transfer in a channel with sinusoidal distribution on walls

Author

Listed:
  • Javadzadegan, Ashkan
  • Motaharpour, S. Hossein
  • Moshfegh, Abouzar
  • Akbari, Omid Ali
  • Afrouzi, Hamid Hassanzadeh
  • Toghraie, Davood

Abstract

In the present study, the combined forced convection and radiation in a channel is numerically investigated by using Lattice-Boltzmann method (LBM). The effects of physical properties and radiative characteristics such as Peclet number, radiation parameter, emissivity coefficient, and also the absorption coefficient have been investigated. In order to validate the LBM numerical procedure, the results have been initially compared by using finite volume method (FVM). It is observed that, in all of the cases, there are proper coincidences between LBM and FVM results. The results of this study indicate that, by considering radiation heat transfer, the great contribution to the heat transfer geometrics has been studied and its rate changes depending on different parameters such as ε, RP, Pe and Pr. The increase of radiation parameter causes temperature enhancement and reduction of temperature gradient. By increasing the radiation parameter, the growth of thermal boundary layer enhances and its penetration to the central core of flow enhances significantly. The reduction of the emissivity coefficient of walls or the decrease of radiation from the walls causes the reduction of radiation absorption rate in channel. In high Pe numbers, the growth and penetration of thermal boundary layer to higher layers from the heated surface reduce significantly.

Suggested Citation

  • Javadzadegan, Ashkan & Motaharpour, S. Hossein & Moshfegh, Abouzar & Akbari, Omid Ali & Afrouzi, Hamid Hassanzadeh & Toghraie, Davood, 2019. "Lattice-Boltzmann method for analysis of combined forced convection and radiation heat transfer in a channel with sinusoidal distribution on walls," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
  • Handle: RePEc:eee:phsmap:v:526:y:2019:i:c:s037843711930651x
    DOI: 10.1016/j.physa.2019.121066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711930651X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.121066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jourabian, Mahmoud & Rabienataj Darzi, A. Ali & Akbari, Omid Ali & Toghraie, Davood, 2020. "The enthalpy-based lattice Boltzmann method (LBM) for simulation of NePCM melting in inclined elliptical annulus," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:526:y:2019:i:c:s037843711930651x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.