Dissipative particle dynamics: Effects of thermostating schemes on nano-colloid electrophoresis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2018.01.017
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nemati, Maedeh & Shateri Najaf Abady, Ali Reza & Toghraie, Davood & Karimipour, Arash, 2018. "Numerical investigation of the pseudopotential lattice Boltzmann modeling of liquid–vapor for multi-phase flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 65-77.
- Karimipour, Arash & Hemmat Esfe, Mohammad & Safaei, Mohammad Reza & Toghraie Semiromi, Davood & Jafari, Saeed & Kazi, S.N., 2014. "Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 150-168.
- Rezaei, M. & Azimian, A.R. & Toghraie, D., 2015. "Molecular dynamics study of an electro-kinetic fluid transport in a charged nanochannel based on the role of the stern layer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 426(C), pages 25-34.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Afrouzi, Hamid Hassanzadeh & Hosseini, Mirolah & Toghraie, Davood & Mehryaar, Ehsan & Afrand, Masoud, 2020. "Thermo-hydraulic characteristics investigation of nanofluid heat transfer in a microchannel with super hydrophobic surfaces under non-uniform magnetic field using Incompressible Preconditioned Lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
- Javadzadegan, Ashkan & Joshaghani, Mohammad & Moshfegh, Abouzar & Akbari, Omid Ali & Afrouzi, Hamid Hassanzadeh & Toghraie, Davood, 2020. "Accurate meso-scale simulation of mixed convective heat transfer in a porous media for a vented square with hot elliptic obstacle: An LBM approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jahangiri, Ali & Mohammadi, Samira & Akbari, Mohammad, 2019. "Modeling the one-dimensional inverse heat transfer problem using a Haar wavelet collocation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 13-26.
- Afrouzi, Hamid Hassanzadeh & Ahmadian, Majid & Moshfegh, Abouzar & Toghraie, Davood & Javadzadegan, Ashkan, 2019. "Statistical analysis of pulsating non-Newtonian flow in a corrugated channel using Lattice-Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
- Goodarzi, Marjan & D’Orazio, Annunziata & Keshavarzi, Ahmad & Mousavi, Sayedali & Karimipour, Arash, 2018. "Develop the nano scale method of lattice Boltzmann to predict the fluid flow and heat transfer of air in the inclined lid driven cavity with a large heat source inside, Two case studies: Pure natural ," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 210-233.
- Karimipour, Arash & D’Orazio, Annunziata & Goodarzi, Marjan, 2018. "Develop the lattice Boltzmann method to simulate the slip velocity and temperature domain of buoyancy forces of FMWCNT nanoparticles in water through a micro flow imposed to the specified heat flux," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 729-745.
- Ahmadi Balootaki, Azam & Karimipour, Arash & Toghraie, Davood, 2018. "Nano scale lattice Boltzmann method to simulate the mixed convection heat transfer of air in a lid-driven cavity with an endothermic obstacle inside," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 681-701.
- Safaei, Mohammad Reza & Karimipour, Arash & Abdollahi, Ali & Nguyen, Truong Khang, 2018. "The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 515-535.
- Li, Chengwu & Zhao, Yuechao & Ai, Dihao & Wang, Qifei & Peng, Zhigao & Li, Yingjun, 2020. "Multi-component LBM-LES model of the air and methane flow in tunnels and its validation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
- Mahyari, Amirhossein Ansari & Karimipour, Arash & Afrand, Masoud, 2019. "Effects of dispersed added Graphene Oxide-Silicon Carbide nanoparticles to present a statistical formulation for the mixture thermal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 98-112.
- Rasti, Ehsan & Talebi, Farhad & Mazaheri, Kiumars, 2019. "Improvement of drag reduction prediction in viscoelastic pipe flows using proper low-Reynolds k-ε turbulence models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 412-422.
- Karimipour, Arash & Bagherzadeh, Seyed Amin & Taghipour, Abdolmajid & Abdollahi, Ali & Safaei, Mohammad Reza, 2019. "A novel nonlinear regression model of SVR as a substitute for ANN to predict conductivity of MWCNT-CuO/water hybrid nanofluid based on empirical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 89-97.
- Jourabian, Mahmoud & Rabienataj Darzi, A. Ali & Akbari, Omid Ali & Toghraie, Davood, 2020. "The enthalpy-based lattice Boltzmann method (LBM) for simulation of NePCM melting in inclined elliptical annulus," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
- Alipour, Pedram & Toghraie, Davood & Karimipour, Arash, 2019. "Investigation the atomic arrangement and stability of the fluid inside a rough nanochannel in both presence and absence of different roughness by using of accurate nano scale simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 639-660.
- Dolatabadi, Peiman Davari & Khanlari, Karen & Ghafory Ashtiany, Mohsen & Hosseini, Mahmood, 2020. "System identification method by using inverse solution of equations of motion in time domain and noisy condition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
- Zarei, Amir & Karimipour, Arash & Meghdadi Isfahani, Amir Homayoon & Tian, Zhe, 2019. "Improve the performance of lattice Boltzmann method for a porous nanoscale transient flow by provide a new modified relaxation time equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
- Bahrami, Mehrdad & Akbari, Mohammad & Bagherzadeh, Seyed Amin & Karimipour, Arash & Afrand, Masoud & Goodarzi, Marjan, 2019. "Develop 24 dissimilar ANNs by suitable architectures & training algorithms via sensitivity analysis to better statistical presentation: Measure MSEs between targets & ANN for Fe–CuO/Eg–Water nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 159-168.
- Ezzatneshan, Eslam & Vaseghnia, Hamed, 2020. "Evaluation of equations of state in multiphase lattice Boltzmann method with considering surface wettability effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
- Alsarraf, Jalal & Moradikazerouni, Alireza & Shahsavar, Amin & Afrand, Masoud & Salehipour, Hamzeh & Tran, Minh Duc, 2019. "Hydrothermal analysis of turbulent boehmite alumina nanofluid flow with different nanoparticle shapes in a minichannel heat exchanger using two-phase mixture model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 275-288.
- Ruhani, Behrooz & Toghraie, Davood & Hekmatifar, Maboud & Hadian, Mahdieh, 2019. "Statistical investigation for developing a new model for rheological behavior of ZnO–Ag (50%–50%)/Water hybrid Newtonian nanofluid using experimental data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 741-751.
- Khaje khabaz, Moahamad & Eftekhari, S. Ali & Hashemian, Mohamad & Toghraie, Davood, 2020. "Optimal vibration control of multi-layer micro-beams actuated by piezoelectric layer based on modified couple stress and surface stress elasticity theories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).
- Nafchi, Peyman Mirzakhani & Karimipour, Arash & Afrand, Masoud, 2019. "The evaluation on a new non-Newtonian hybrid mixture composed of TiO2/ZnO/EG to present a statistical approach of power law for its rheological and thermal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 1-18.
More about this item
Keywords
DPD; Electrophoresis; Monovalent electrolyte; Colloidal mobility; Thermostatic schemes;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:497:y:2018:i:c:p:285-301. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.