IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v87y2016icp1-13.html
   My bibliography  Save this article

Effect of stochastic transition in the fundamental diagram of traffic flow

Author

Listed:
  • Siqueira, Adriano F.
  • Peixoto, Carlos J.T.
  • Wu, Chen
  • Qian, Wei-Liang

Abstract

In this work, we propose an alternative stochastic model for the fundamental diagram of traffic flow with minimal number of parameters. Our approach is based on a mesoscopic viewpoint of the traffic system in terms of the dynamics of vehicle speed transitions. A key feature of the present approach lies in its stochastic nature which makes it possible to study not only the flow-concentration relation, namely, the fundamental diagram, but also its uncertainty, namely, the variance of the fundamental diagram—an important characteristic in the observed traffic flow data. It is shown that in the simplified versions of the model consisting of only a few speed states, analytic solutions for both quantities can be obtained, which facilitate the discussion of the corresponding physical content. We also show that the effect of vehicle size can be included into the model by introducing the maximal congestion density kmax. By making use of this parameter, the free flow region and congested flow region are naturally divided, and the transition is characterized by the capacity drop at the maximum of the flow-concentration relation. The model parameters are then adjusted to the observed traffic flow on the I-80 Freeway Dataset in the San Francisco area from the NGSIM program, where both the fundamental diagram and its variance are reasonably reproduced. Despite its simplicity, we argue that the current model provides an alternative description for the fundamental diagram and its uncertainty in the study of traffic flow.

Suggested Citation

  • Siqueira, Adriano F. & Peixoto, Carlos J.T. & Wu, Chen & Qian, Wei-Liang, 2016. "Effect of stochastic transition in the fundamental diagram of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 87(C), pages 1-13.
  • Handle: RePEc:eee:transb:v:87:y:2016:i:c:p:1-13
    DOI: 10.1016/j.trb.2016.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S019126151600028X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2016.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheu, Jiuh-Biing & Wu, Hsi-Jen, 2015. "Driver perception uncertainty in perceived relative speed and reaction time in car following – A quantum optical flow perspective," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 257-274.
    2. Kwiecinska, Anna A., 1999. "Stabilization of partial differential equations by noise," Stochastic Processes and their Applications, Elsevier, vol. 79(2), pages 179-184, February.
    3. Cassidy, Michael J., 1998. "Bivariate relations in nearly stationary highway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 32(1), pages 49-59, January.
    4. Boel, René & Mihaylova, Lyudmila, 2006. "A compositional stochastic model for real time freeway traffic simulation," Transportation Research Part B: Methodological, Elsevier, vol. 40(4), pages 319-334, May.
    5. Zhang, H.M. & Kim, T., 2005. "A car-following theory for multiphase vehicular traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 385-399, June.
    6. He, Zhengbing & Zheng, Liang & Guan, Wei, 2015. "A simple nonparametric car-following model driven by field data," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 185-201.
    7. Costeseque, Guillaume & Lebacque, Jean-Patrick, 2014. "A variational formulation for higher order macroscopic traffic flow models: Numerical investigation," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 112-133.
    8. Nelson, Paul & Sopasakis, Alexandros, 1998. "The prigogine-herman kinetic model predicts widely scattered traffic flow data at high concentrations," Transportation Research Part B: Methodological, Elsevier, vol. 32(8), pages 589-604, November.
    9. Jiang, Rui & Hu, Mao-Bin & Zhang, H.M. & Gao, Zi-You & Jia, Bin & Wu, Qing-Song, 2015. "On some experimental features of car-following behavior and how to model them," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 338-354.
    10. Li, Jia & Zhang, H.M., 2013. "The variational formulation of a non-equilibrium traffic flow model: Theory and implications," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 314-325.
    11. Chen, Danjue & Laval, Jorge & Zheng, Zuduo & Ahn, Soyoung, 2012. "A behavioral car-following model that captures traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 744-761.
    12. Zhang, H. M., 1999. "A mathematical theory of traffic hysteresis," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 1-23, February.
    13. Daganzo, Carlos F., 2002. "A behavioral theory of multi-lane traffic flow. Part I: Long homogeneous freeway sections," Transportation Research Part B: Methodological, Elsevier, vol. 36(2), pages 131-158, February.
    14. Alvarez, A. & Brey, J. J. & Casado, J. M., 1990. "A simulation model for traffic flow with passing," Transportation Research Part B: Methodological, Elsevier, vol. 24(3), pages 193-202, June.
    15. Wang, Yibing & Papageorgiou, Markos, 2005. "Real-time freeway traffic state estimation based on extended Kalman filter: a general approach," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 141-167, February.
    16. Li, Xiaopeng & Ouyang, Yanfeng, 2011. "Characterization of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1346-1361.
    17. P. Wagner, 2011. "A time-discrete harmonic oscillator model of human car-following," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 84(4), pages 713-718, December.
    18. Denos C. Gazis & Robert Herman & Renfrey B. Potts, 1959. "Car-Following Theory of Steady-State Traffic Flow," Operations Research, INFORMS, vol. 7(4), pages 499-505, August.
    19. Rickert, M. & Nagel, K. & Schreckenberg, M. & Latour, A., 1996. "Two lane traffic simulations using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 231(4), pages 534-550.
    20. I. Prigogine & F. C. Andrews, 1960. "A Boltzmann-Like Approach for Traffic Flow," Operations Research, INFORMS, vol. 8(6), pages 789-797, December.
    21. Mao, Xuerong, 1999. "Stability of stochastic differential equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 79(1), pages 45-67, January.
    22. Laval, Jorge A., 2011. "Hysteresis in traffic flow revisited: An improved measurement method," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 385-391, February.
    23. Sumalee, A. & Zhong, R.X. & Pan, T.L. & Szeto, W.Y., 2011. "Stochastic cell transmission model (SCTM): A stochastic dynamic traffic model for traffic state surveillance and assignment," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 507-533, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bai, Lu & Wong, S.C. & Xu, Pengpeng & Chow, Andy H.F. & Lam, William H.K., 2021. "Calibration of stochastic link-based fundamental diagram with explicit consideration of speed heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 524-539.
    2. Bouadi, Marouane & Jia, Bin & Jiang, Rui & Li, Xingang & Gao, Zi-You, 2022. "Stochastic factors and string stability of traffic flow: Analytical investigation and numerical study based on car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 96-122.
    3. Wang, Jiawen & Zou, Linzhi & Zhao, Jing & Wang, Xinwei, 2024. "Dynamic capacity drop propagation in incident-affected networks: Traffic state modeling with SIS-CTM," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    4. Qu, Xiaobo & Zhang, Jin & Wang, Shuaian, 2017. "On the stochastic fundamental diagram for freeway traffic: Model development, analytical properties, validation, and extensive applications," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 256-271.
    5. Qian, Wei-Liang & F. Siqueira, Adriano & F. Machado, Romuel & Lin, Kai & Grant, Ted W., 2017. "Dynamical capacity drop in a nonlinear stochastic traffic model," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 328-339.
    6. Cheng, Qixiu & Lin, Yuqian & Zhou, Xuesong (Simon) & Liu, Zhiyuan, 2024. "Analytical formulation for explaining the variations in traffic states: A fundamental diagram modeling perspective with stochastic parameters," European Journal of Operational Research, Elsevier, vol. 312(1), pages 182-197.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Wei-Liang & F. Siqueira, Adriano & F. Machado, Romuel & Lin, Kai & Grant, Ted W., 2017. "Dynamical capacity drop in a nonlinear stochastic traffic model," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 328-339.
    2. Mohammadian, Saeed & Zheng, Zuduo & Haque, Md. Mazharul & Bhaskar, Ashish, 2021. "Performance of continuum models for realworld traffic flows: Comprehensive benchmarking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 132-167.
    3. Blandin, Sébastien & Argote, Juan & Bayen, Alexandre M. & Work, Daniel B., 2013. "Phase transition model of non-stationary traffic flow: Definition, properties and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 31-55.
    4. Jabari, Saif Eddin & Zheng, Jianfeng & Liu, Henry X., 2014. "A probabilistic stationary speed–density relation based on Newell’s simplified car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 205-223.
    5. Yibing Wang & Long Wang & Xianghua Yu & Jingqiu Guo, 2023. "Capacity Drop at Freeway Ramp Merges with Its Replication in Macroscopic and Microscopic Traffic Simulations: A Tutorial Report," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    6. Mohammadian, Saeed & Zheng, Zuduo & Haque, Mazharul & Bhaskar, Ashish, 2023. "NET-RAT: Non-equilibrium traffic model based on risk allostasis theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    7. Wang, Xiao & Jiang, Rui & Li, Li & Lin, Yi-Lun & Wang, Fei-Yue, 2019. "Long memory is important: A test study on deep-learning based car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 786-795.
    8. Yao, Handong & Li, Qianwen & Li, Xiaopeng, 2020. "A study of relationships in traffic oscillation features based on field experiments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 339-355.
    9. Chen, Danjue & Ahn, Soyoung & Laval, Jorge & Zheng, Zuduo, 2014. "On the periodicity of traffic oscillations and capacity drop: The role of driver characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 117-136.
    10. Xin, Qi & Yang, Nan & Fu, Rui & Yu, Shaowei & Shi, Zhongke, 2018. "Impacts analysis of car following models considering variable vehicular gap policies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 338-355.
    11. Bai, Lu & Wong, S.C. & Xu, Pengpeng & Chow, Andy H.F. & Lam, William H.K., 2021. "Calibration of stochastic link-based fundamental diagram with explicit consideration of speed heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 524-539.
    12. Tian, Junfang & Li, Guangyu & Treiber, Martin & Jiang, Rui & Jia, Ning & Ma, Shoufeng, 2016. "Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 560-575.
    13. Saifuzzaman, Mohammad & Zheng, Zuduo & Haque, Md. Mazharul & Washington, Simon, 2017. "Understanding the mechanism of traffic hysteresis and traffic oscillations through the change in task difficulty level," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 523-538.
    14. Jiang, Rui & Hu, Mao-Bin & Zhang, H.M. & Gao, Zi-You & Jia, Bin & Wu, Qing-Song, 2015. "On some experimental features of car-following behavior and how to model them," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 338-354.
    15. Maiti, Nandan & Chilukuri, Bhargava Rama, 2023. "Does anisotropy hold in mixed traffic conditions?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    16. Oh, Simon & Yeo, Hwasoo, 2015. "Impact of stop-and-go waves and lane changes on discharge rate in recovery flow," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 88-102.
    17. Jabari, Saif Eddin & Liu, Henry X., 2013. "A stochastic model of traffic flow: Gaussian approximation and estimation," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 15-41.
    18. Geroliminis, Nikolas & Sun, Jie, 2011. "Hysteresis phenomena of a Macroscopic Fundamental Diagram in freeway networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 966-979, November.
    19. Yeo, Hwasoo, 2008. "Asymmetric Microscopic Driving Behavior Theory," University of California Transportation Center, Working Papers qt1tn1m968, University of California Transportation Center.
    20. Zheng, Shi-Teng & Jiang, Rui & Tian, Jun-Fang & Zhang, H.M. & Li, Zhen-Hua & Gao, Lan-Da & Jia, Bin, 2021. "Experimental study on properties of lightly congested flow," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 1-19.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:87:y:2016:i:c:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.