IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v333y2018icp145-168.html
   My bibliography  Save this article

Exponential stability and extended dissipativity criteria for generalized discrete-time neural networks with additive time-varying delays

Author

Listed:
  • Shan, Yaonan
  • She, Kun
  • Zhong, Shouming
  • Zhong, Qishui
  • Shi, Kaibo
  • Zhao, Can

Abstract

This paper is concerned with exponential stability and extended dissipativity criteria for generalized discrete-time neural networks (GDNNs) with additive time-varying delays. The generalized dissipativity analysis combines a few previous results into a framework, such as l2−l∞ performance, H∞ performance, passivity performance, strictly (Q,S,R)−γ−dissipative and strictly (Q,S,R)−dissipative. The definition of exponential stability for GDNNs is given with a new and more appropriate expression. A novel augmented Lyapunov-Krasovskii functional (LKF) which involves more information about the additive time-varying delays is constructed. By introducing more zero equalities and using a new double summation inequality together with Finsler’s lemma, an improved delay-dependent exponential stability and extended dissipativity criterion are derived in terms of convex combination technique (CCT). Finally, numerical examples are given to illustrate the usefulness and advantages of the proposed methods.

Suggested Citation

  • Shan, Yaonan & She, Kun & Zhong, Shouming & Zhong, Qishui & Shi, Kaibo & Zhao, Can, 2018. "Exponential stability and extended dissipativity criteria for generalized discrete-time neural networks with additive time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 145-168.
  • Handle: RePEc:eee:apmaco:v:333:y:2018:i:c:p:145-168
    DOI: 10.1016/j.amc.2018.03.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318302820
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.03.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang, Jinling & Cao, Jinde, 2006. "A based-on LMI stability criterion for delayed recurrent neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 28(1), pages 154-160.
    2. Zhang, Tongqian & Ma, Wanbiao & Meng, Xinzhu & Zhang, Tonghua, 2015. "Periodic solution of a prey–predator model with nonlinear state feedback control," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 95-107.
    3. Shi, Kaibo & Liu, Xinzhi & Zhu, Hong & Zhong, Shouming & Zeng, Yong & Yin, Chun, 2016. "Novel delay-dependent master-slave synchronization criteria of chaotic Lur’e systems with time-varying-delay feedback control," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 137-154.
    4. Xiong, Lianglin & Cheng, Jun & Cao, Jinde & Liu, Zixin, 2018. "Novel inequality with application to improve the stability criterion for dynamical systems with two additive time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 672-688.
    5. Nagamani, G. & Ramasamy, S., 2016. "Stochastic dissipativity and passivity analysis for discrete-time neural networks with probabilistic time-varying delays in the leakage term," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 237-257.
    6. Guo, Runan & Zhang, Ziye & Liu, Xiaoping & Lin, Chong, 2017. "Existence, uniqueness, and exponential stability analysis for complex-valued memristor-based BAM neural networks with time delays," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 100-117.
    7. Wang, Bo & Yan, Juan & Cheng, Jun & Zhong, Shouming, 2017. "New criteria of stability analysis for generalized neural networks subject to time-varying delayed signals," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 322-333.
    8. Meng, Xin-zhu & Zhao, Sheng-nan & Zhang, Wen-yan, 2015. "Adaptive dynamics analysis of a predator–prey model with selective disturbance," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 946-958.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mathiyalagan, K. & Ragul, R., 2022. "Observer-based finite-time dissipativity for parabolic systems with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 413(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long, Shaohua & Wu, Yunlong & Zhong, Shouming & Zhang, Dian, 2018. "Stability analysis for a class of neutral type singular systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 113-131.
    2. Li, Hongjie & Zhu, Yinglian & jing, Liu & ying, Wang, 2018. "Consensus of second-order delayed nonlinear multi-agent systems via node-based distributed adaptive completely intermittent protocols," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 1-15.
    3. Zhang, Dian & Cheng, Jun & Ki Ahn, Choon & Ni, Hongjie, 2019. "A flexible terminal approach to stochastic stability and stabilization of continuous-time semi-Markovian jump systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 191-205.
    4. Xie, Wenqian & Zhu, Hong & Zhong, Shouming & Zhang, Dian & Shi, Kaibo & Cheng, Jun, 2018. "Extended dissipative estimator design for uncertain switched delayed neural networks via a novel triple integral inequality," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 82-102.
    5. Li, Qian & Liu, Xinzhi & Zhu, Qingxin & Zhong, Shouming & Zhang, Dian, 2019. "Distributed state estimation for stochastic discrete-time sensor networks with redundant channels," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 230-246.
    6. Liu, Xia & Zhang, Tonghua & Meng, Xinzhu & Zhang, Tongqian, 2018. "Turing–Hopf bifurcations in a predator–prey model with herd behavior, quadratic mortality and prey-taxis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 446-460.
    7. Feifei Bian & Wencai Zhao & Yi Song & Rong Yue, 2017. "Dynamical Analysis of a Class of Prey-Predator Model with Beddington-DeAngelis Functional Response, Stochastic Perturbation, and Impulsive Toxicant Input," Complexity, Hindawi, vol. 2017, pages 1-18, December.
    8. Song, Qiankun & Wang, Zidong, 2008. "Neural networks with discrete and distributed time-varying delays: A general stability analysis," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1538-1547.
    9. Wang, Bo & Cheng, Jun & Zhou, Xia, 2020. "A multiple hierarchical structure strategy to quantized control of Markovian switching systems," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    10. Luo, Tianjiao, 2019. "Stabilization of multi-group models with multiple dispersal and stochastic perturbation via feedback control based on discrete-time state observations," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 396-410.
    11. Zhang, Kun & Zhang, Huaguang & Mu, Yunfei & Sun, Shaoxin, 2019. "Tracking control optimization scheme for a class of partially unknown fuzzy systems by using integral reinforcement learning architecture," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 344-356.
    12. R. Sakthivel & V. Nithya & Yong-Ki Ma & Chao Wang, 2018. "Finite-Time Nonfragile Dissipative Filter Design for Wireless Networked Systems with Sensor Failures," Complexity, Hindawi, vol. 2018, pages 1-13, October.
    13. Tian, Yuan & Li, Chunxue & Liu, Jing, 2023. "Complex dynamics and optimal harvesting strategy of competitive harvesting models with interval-valued imprecise parameters," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    14. Wang, Chen & Zhang, Hai & Ye, Renyu & Zhang, Weiwei & Zhang, Hongmei, 2023. "Finite time passivity analysis for Caputo fractional BAM reaction–diffusion delayed neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 424-443.
    15. Duan, Wenyong & Li, Yan & Sun, Yi & Chen, Jian & Yang, Xiaodong, 2020. "Enhanced master–slave synchronization criteria for chaotic Lur’e systems based on time-delayed feedback control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 276-294.
    16. Katiyar, S.K. & Chand, A. K. B & Saravana Kumar, G., 2019. "A new class of rational cubic spline fractal interpolation function and its constrained aspects," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 319-335.
    17. Zhen Yang & Zhengqiu Zhang, 2022. "Finite-Time Synchronization Analysis for BAM Neural Networks with Time-Varying Delays by Applying the Maximum-Value Approach with New Inequalities," Mathematics, MDPI, vol. 10(5), pages 1-16, March.
    18. Zhang, Zhiming & Zheng, Wei & Lam, H.K. & Wen, Shuhuan & Sun, Fuchun & Xie, Ping, 2020. "Stability analysis and output feedback control for stochastic networked systems with multiple communication delays and nonlinearities using fuzzy control technique," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    19. Singh, Vimal, 2007. "Some remarks on global asymptotic stability of neural networks with constant time delay," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1720-1724.
    20. Rakkiyappan, R. & Velmurugan, G. & Nicholas George, J. & Selvamani, R., 2017. "Exponential synchronization of Lur’e complex dynamical networks with uncertain inner coupling and pinning impulsive control," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 217-231.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:333:y:2018:i:c:p:145-168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.