IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v292y2017icp253-271.html
   My bibliography  Save this article

Dynamics analysis and control optimization of a pest management predator–prey model with an integrated control strategy

Author

Listed:
  • Sun, Kaibiao
  • Zhang, Tonghua
  • Tian, Yuan

Abstract

Pest management is a complex issue in real applications, and a practical program in pest control in general involves two pest thresholds, where the biological control and chemical control are activated respectively. Aiming at providing a good balance between the biological control and chemical control, this work presented an integrated pest management predator–prey model, where the yield of releases of predator and the strength of pesticide spraying are linearly dependent on the selected control level. Firstly, to determine the frequency of spraying chemical pesticide and releasing of predator, the existence of the order-1 periodic orbit of the proposed model is discussed by the successor function method. And then, to ensure a certain robustness of adopted control, the stability of the order-1 periodic orbit is verified by a stability criterion extracted for a general semi-continuous dynamical system. In addition, to minimize the total cost (i.e. culturing predators and spraying pesticide) in pest control, an optimization problem is formulated and the optimum pest control level is obtained. At last, to complement the theoretical results, the numerical simulations with a specific model are carried out step by step.

Suggested Citation

  • Sun, Kaibiao & Zhang, Tonghua & Tian, Yuan, 2017. "Dynamics analysis and control optimization of a pest management predator–prey model with an integrated control strategy," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 253-271.
  • Handle: RePEc:eee:apmaco:v:292:y:2017:i:c:p:253-271
    DOI: 10.1016/j.amc.2016.07.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300316304842
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.07.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Guirong & Lu, Qishao & Qian, Linning, 2007. "Complex dynamics of a Holling type II prey–predator system with state feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 31(2), pages 448-461.
    2. Zhang, Tongqian & Ma, Wanbiao & Meng, Xinzhu & Zhang, Tonghua, 2015. "Periodic solution of a prey–predator model with nonlinear state feedback control," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 95-107.
    3. Xiang, Zhongyi & Tang, Sanyi & Xiang, Changcheng & Wu, Jianhong, 2015. "On impulsive pest control using integrated intervention strategies," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 930-946.
    4. Tian, Yuan & Sun, Kaibiao & Chen, Lansun, 2011. "Modelling and qualitative analysis of a predator–prey system with state-dependent impulsive effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(2), pages 318-331.
    5. Nie, Linfei & Teng, Zhidong & Hu, Lin & Peng, Jigen, 2009. "Existence and stability of periodic solution of a predator–prey model with state-dependent impulsive effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(7), pages 2122-2134.
    6. Ghosh, Bapan & Grognard, Frédéric & Mailleret, Ludovic, 2015. "Natural enemies deployment in patchy environments for augmentative biological control," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 982-999.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Airen Zhou, 2023. "Analysis of an Integrated Pest Management Model with Impulsive Diffusion between Two Regions," Mathematics, MDPI, vol. 11(13), pages 1-18, July.
    2. Lirong Liu & Changcheng Xiang & Guangyao Tang & Yuan Fu, 2019. "Sliding Dynamics of a Filippov Forest-Pest Model with Threshold Policy Control," Complexity, Hindawi, vol. 2019, pages 1-17, November.
    3. Ihsan Ullah Khan & Sanyi Tang & Biao Tang, 2019. "The State-Dependent Impulsive Model with Action Threshold Depending on the Pest Density and Its Changing Rate," Complexity, Hindawi, vol. 2019, pages 1-15, June.
    4. Toni Bakhtiar & Ihza Rizkia Fitri & Farida Hanum & Ali Kusnanto, 2022. "Mathematical Model of Pest Control Using Different Release Rates of Sterile Insects and Natural Enemies," Mathematics, MDPI, vol. 10(6), pages 1-18, March.
    5. Zhenzhen Shi & Yaning Li & Huidong Cheng, 2019. "Dynamic Analysis of a Pest Management Smith Model with Impulsive State Feedback Control and Continuous Delay," Mathematics, MDPI, vol. 7(7), pages 1-15, July.
    6. Liu, Yanwei & Zhang, Tonghua & Liu, Xia, 2020. "Investigating the interactions between Allee effect and harvesting behaviour of a single species model: An evolutionary dynamics approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    7. Qi Cai & Yushi Cai & Yali Wen, 2018. "Spatially Differentiated Trends between Forest Pest-Induced Losses and Measures for Their Control in China," Sustainability, MDPI, vol. 11(1), pages 1-16, December.
    8. Tian, Yuan & Gao, Yan & Sun, Kaibiao, 2022. "Global dynamics analysis of instantaneous harvest fishery model guided by weighted escapement strategy," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Yuan & Li, Chunxue & Liu, Jing, 2023. "Complex dynamics and optimal harvesting strategy of competitive harvesting models with interval-valued imprecise parameters," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. Li, Wenjie & Huang, Lihong & Guo, Zhenyuan & Ji, Jinchen, 2020. "Global dynamic behavior of a plant disease model with ratio dependent impulsive control strategy," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 120-139.
    3. Tian, Yuan & Gao, Yan & Sun, Kaibiao, 2022. "Global dynamics analysis of instantaneous harvest fishery model guided by weighted escapement strategy," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    4. Tian, Yuan & Sun, Kaibiao & Chen, Lansun, 2011. "Modelling and qualitative analysis of a predator–prey system with state-dependent impulsive effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(2), pages 318-331.
    5. Feifei Bian & Wencai Zhao & Yi Song & Rong Yue, 2017. "Dynamical Analysis of a Class of Prey-Predator Model with Beddington-DeAngelis Functional Response, Stochastic Perturbation, and Impulsive Toxicant Input," Complexity, Hindawi, vol. 2017, pages 1-18, December.
    6. Wu, Chufen & Yang, Yong & Weng, Peixuan, 2013. "Traveling waves in a diffusive predator–prey system of Holling type: Point-to-point and point-to-periodic heteroclinic orbits," Chaos, Solitons & Fractals, Elsevier, vol. 48(C), pages 43-53.
    7. Tian, Yuan & Li, Huanmeng & Sun, Kaibiao, 2024. "Complex dynamics of a fishery model: Impact of the triple effects of fear, cooperative hunting and intermittent harvesting," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 31-48.
    8. Jana, Soovoojeet & Chakraborty, Milon & Chakraborty, Kunal & Kar, T.K., 2012. "Global stability and bifurcation of time delayed prey–predator system incorporating prey refuge," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 85(C), pages 57-77.
    9. Huo, Liang’an & Jiang, Jiehui & Gong, Sixing & He, Bing, 2016. "Dynamical behavior of a rumor transmission model with Holling-type II functional response in emergency event," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 228-240.
    10. Shan, Yaonan & She, Kun & Zhong, Shouming & Zhong, Qishui & Shi, Kaibo & Zhao, Can, 2018. "Exponential stability and extended dissipativity criteria for generalized discrete-time neural networks with additive time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 145-168.
    11. Zu, Jian, 2013. "Global qualitative analysis of a predator–prey system with Allee effect on the prey species," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 33-54.
    12. Yang, Jin & Tang, Guangyao, 2019. "Piecewise chemostat model with control strategy," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 156(C), pages 126-142.
    13. Jiang, Guirong & Yang, Qigui, 2009. "Complex dynamics in a linear impulsive system," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2341-2353.
    14. Çelik, Canan & Duman, Oktay, 2009. "Allee effect in a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1956-1962.
    15. Yangyang Su & Tongqian Zhang, 2022. "Global Dynamics of a Predator–Prey Model with Fear Effect and Impulsive State Feedback Control," Mathematics, MDPI, vol. 10(8), pages 1-23, April.
    16. Wu, Shi-Liang & Li, Wan-Tong, 2009. "Global asymptotic stability of bistable traveling fronts in reaction-diffusion systems and their applications to biological models," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1229-1239.
    17. Li, Hongjie & Zhu, Yinglian & jing, Liu & ying, Wang, 2018. "Consensus of second-order delayed nonlinear multi-agent systems via node-based distributed adaptive completely intermittent protocols," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 1-15.
    18. Liu, Fuxiang & Yang, Ruizhi & Tang, Leiyu, 2019. "Hopf bifurcation in a diffusive predator-prey model with competitive interference," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 250-258.
    19. Peng, Yahong & Zhang, Tonghua, 2016. "Turing instability and pattern induced by cross-diffusion in a predator-prey system with Allee effect," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 1-12.
    20. Yu, Tianhu & Cao, Dengqing & Yang, Yang & Liu, Shengqiang & Huang, Wenhu, 2016. "Robust synchronization of impulsively coupled complex dynamical network with delayed nonidentical nodes," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 92-101.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:292:y:2017:i:c:p:253-271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.