IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v444y2016icp680-688.html
   My bibliography  Save this article

Using string invariants for prediction searching for optimal parameters

Author

Listed:
  • Bundzel, Marek
  • Kasanický, Tomáš
  • Pinčák, Richard

Abstract

We have developed a novel prediction method based on string invariants. The method does not require learning but a small set of parameters must be set to achieve optimal performance. We have implemented an evolutionary algorithm for the parametric optimization. We have tested the performance of the method on artificial and real world data and compared the performance to statistical methods and to a number of artificial intelligence methods. We have used data and the results of a prediction competition as a benchmark. The results show that the method performs well in single step prediction but the method’s performance for multiple step prediction needs to be improved. The method works well for a wide range of parameters.

Suggested Citation

  • Bundzel, Marek & Kasanický, Tomáš & Pinčák, Richard, 2016. "Using string invariants for prediction searching for optimal parameters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 680-688.
  • Handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:680-688
    DOI: 10.1016/j.physa.2015.10.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115009097
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.10.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael C. Munnix & Takashi Shimada & Rudi Schafer & Francois Leyvraz Thomas H. Seligman & Thomas Guhr & H. E. Stanley, 2012. "Identifying States of a Financial Market," Papers 1202.1623, arXiv.org.
    2. Justin Wolfers & Eric Zitzewitz, 2004. "Prediction Markets," Journal of Economic Perspectives, American Economic Association, vol. 18(2), pages 107-126, Spring.
    3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    4. Egrioglu, Erol, 2014. "PSO-based high order time invariant fuzzy time series method: Application to stock exchange data," Economic Modelling, Elsevier, vol. 38(C), pages 633-639.
    5. Pinčák, Richard & Bartoš, Erik, 2015. "With string model to time series forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 135-146.
    6. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    7. Cheng, Ching-Hsue & Wei, Liang-Ying & Liu, Jing-Wei & Chen, Tai-Liang, 2013. "OWA-based ANFIS model for TAIEX forecasting," Economic Modelling, Elsevier, vol. 30(C), pages 442-448.
    8. Horváth, D. & Pincak, R., 2012. "From the currency rate quotations onto strings and brane world scenarios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5172-5188.
    9. Wun-Hua Chen & Jen-Ying Shih & Soushan Wu, 2006. "Comparison of support-vector machines and back propagation neural networks in forecasting the six major Asian stock markets," International Journal of Electronic Finance, Inderscience Enterprises Ltd, vol. 1(1), pages 49-67.
    10. Wei, Liang-Ying, 2013. "A hybrid model based on ANFIS and adaptive expectation genetic algorithm to forecast TAIEX," Economic Modelling, Elsevier, vol. 33(C), pages 893-899.
    11. Tay, Francis E. H. & Cao, Lijuan, 2001. "Application of support vector machines in financial time series forecasting," Omega, Elsevier, vol. 29(4), pages 309-317, August.
    12. Jed D. Christiansen, 2007. "Prediction Markets: Practical Experiments in Small Markets and Behaviours Observed," Journal of Prediction Markets, University of Buckingham Press, vol. 1(1), pages 17-41, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kanjamapornkul, K. & Pinčák, Richard & Bartoš, Erik, 2016. "The study of Thai stock market across the 2008 financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 117-133.
    2. Bartoš, Erik & Pinčák, Richard, 2017. "Identification of market trends with string and D2-brane maps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 57-70.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marek Bundzel & Tomas Kasanicky & Richard Pincak, 2016. "Using String Invariants for Prediction Searching for Optimal Parameters," Papers 1606.06003, arXiv.org.
    2. Pincak, R., 2013. "The string prediction models as invariants of time series in the forex market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6414-6426.
    3. Marius Lux & Wolfgang Karl Härdle & Stefan Lessmann, 2020. "Data driven value-at-risk forecasting using a SVR-GARCH-KDE hybrid," Computational Statistics, Springer, vol. 35(3), pages 947-981, September.
    4. Kaur, Gurbinder & Dhar, Joydip & Guha, Rangan Kumar, 2016. "Minimal variability OWA operator combining ANFIS and fuzzy c-means for forecasting BSE index," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 122(C), pages 69-80.
    5. Frédy Pokou & Jules Sadefo Kamdem & François Benhmad, 2024. "Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1349-1399, April.
    6. Eva DEZSI & Ioan Alin NISTOR, 2016. "Can Deep Machine Learning Outsmart The Market? A Comparison Between Econometric Modelling And Long- Short Term Memory," Romanian Economic Business Review, Romanian-American University, vol. 11(4.1), pages 54-73, december.
    7. Nick James & Max Menzies, 2023. "Collective dynamics, diversification and optimal portfolio construction for cryptocurrencies," Papers 2304.08902, arXiv.org, revised Jun 2023.
    8. Seyed Mehrzad Asaad Sajadi & Pouya Khodaee & Ehsan Hajizadeh & Sabri Farhadi & Sohaib Dastgoshade & Bo Du, 2022. "Deep Learning-Based Methods for Forecasting Brent Crude Oil Return Considering COVID-19 Pandemic Effect," Energies, MDPI, vol. 15(21), pages 1-23, October.
    9. Wei, Liang-Ying, 2013. "A hybrid model based on ANFIS and adaptive expectation genetic algorithm to forecast TAIEX," Economic Modelling, Elsevier, vol. 33(C), pages 893-899.
    10. Thilo A. Schmitt & Rudi Schäfer & Dominik Wied & Thomas Guhr, 2016. "Spatial dependence in stock returns: local normalization and VaR forecasts," Empirical Economics, Springer, vol. 50(3), pages 1091-1109, May.
    11. Guillermo Santamaría-Bonfil & Juan Frausto-Solís & Ignacio Vázquez-Rodarte, 2015. "Volatility Forecasting Using Support Vector Regression and a Hybrid Genetic Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 45(1), pages 111-133, January.
    12. Nick James, 2021. "Evolutionary correlation, regime switching, spectral dynamics and optimal trading strategies for cryptocurrencies and equities," Papers 2112.15321, arXiv.org, revised Mar 2022.
    13. Minot, Nicholas, 2014. "Food price volatility in sub-Saharan Africa: Has it really increased?," Food Policy, Elsevier, vol. 45(C), pages 45-56.
    14. Shively, Gerald E., 2001. "Price thresholds, price volatility, and the private costs of investment in a developing country grain market," Economic Modelling, Elsevier, vol. 18(3), pages 399-414, August.
    15. Tomanova, Lucie, 2013. "Exchange Rate Volatility and the Foreign Trade in CEEC," EY International Congress on Economics I (EYC2013), October 24-25, 2013, Ankara, Turkey 267, Ekonomik Yaklasim Association.
    16. Chang, Chia-Lin, 2015. "Modelling a latent daily Tourism Financial Conditions Index," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 113-126.
    17. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    18. Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2024. "Testing Granger non-causality in expectiles," Econometric Reviews, Taylor & Francis Journals, vol. 43(1), pages 30-51, January.
    19. ?ikolaos A. Kyriazis, 2021. "Impacts of Stock Indices, Oil, and Twitter Sentiment on Major Cryptocurrencies during the COVID-19 First Wave," Bulletin of Applied Economics, Risk Market Journals, vol. 8(2), pages 133-146.
    20. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:680-688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.